4407: 于神之怒加强版
Time Limit: 80 Sec Memory Limit: 512 MBSubmit: 1067 Solved: 494
[Submit][Status][Discuss]
Description
给下N,M,K.求
Input
输入有多组数据,输入数据的第一行两个正整数T,K,代表有T组数据,K的意义如上所示,下面第二行到第T+1行,每行为两个正整数N,M,其意义如上式所示。
Output
如题
Sample Input
1 2
3 3
3 3
Sample Output
20
HINT
Source
析:首先能看出来是莫比乌斯反演,直接求是单次O(n*sqrt(n)),肯定会TLE,然后进行两次分块,单次时间复杂度是O(n),这样我本以为就能过了,结果还是TLE,实在是没想到好办法,就看了题解,题解是再进行化简,只要一次分块就好,其他的都进行预处理,单次询问复杂度是O(sqrt(n))。盗用一张图。
最后这个F函数是一个积性函数,可以用递推和筛法来求。
代码如下:
#pragma comment(linker, "/STACK:1024000000,1024000000") #include <cstdio> #include <string> #include <cstdlib> #include <cmath> #include <iostream> #include <cstring> #include <set> #include <queue> #include <algorithm> #include <vector> #include <map> #include <cctype> #include <cmath> #include <stack> #include <sstream> #include <list> #include <assert.h> #include <bitset> #include <numeric> #define debug() puts("++++") #define gcd(a, b) __gcd(a, b) #define lson l,m,rt<<1 #define rson m+1,r,rt<<1|1 #define fi first #define se second #define pb push_back #define sqr(x) ((x)*(x)) #define ms(a,b) memset(a, b, sizeof a) #define sz size() #define pu push_up #define pd push_down #define cl clear() //#define all 1,n,1 #define FOR(i,x,n) for(int i = (x); i < (n); ++i) #define freopenr freopen("in.txt", "r", stdin) #define freopenw freopen("out.txt", "w", stdout) using namespace std; typedef long long LL; typedef unsigned long long ULL; typedef pair<int, int> P; const int INF = 0x3f3f3f3f; const LL LNF = 1e17; const double inf = 1e20; const double PI = acos(-1.0); const double eps = 1e-8; const int maxn = 5e6 + 5; const int maxm = 3e5 + 10; const LL mod = 1e9 + 7LL; const int dr[] = {-1, 0, 1, 0}; const int dc[] = {0, -1, 0, 1}; const char *de[] = {"0000", "0001", "0010", "0011", "0100", "0101", "0110", "0111", "1000", "1001", "1010", "1011", "1100", "1101", "1110", "1111"}; int n, m; const int mon[] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; const int monn[] = {0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; inline bool is_in(int r, int c) { return r >= 0 && r < n && c >= 0 && c < m; } LL fast_pow(LL a, int n){ LL res = 1; while(n){ if(n&1) res = res * a % mod; a = a * a % mod; n >>= 1; } return res; } LL f[maxn]; int prime[maxn]; bool vis[maxn]; void Moblus(int k){ int tot = 0; f[1] = 1; for(int i = 2; i < maxn; ++i){ if(!vis[i]) prime[tot++] = i, f[i] = fast_pow(i, k) - 1; for(int j = 0; j < tot && i * prime[j] < maxn; ++j){ int t = i * prime[j]; vis[t] = 1; if(i % prime[j] == 0){ f[t] = f[i] * fast_pow(prime[j], k) % mod; break; } f[t] = f[i] * f[prime[j]] % mod; } } for(int i = 2; i < maxn; ++i) f[i] = (f[i-1] + f[i]) % mod; } int main(){ int T, k; scanf("%d %d", &T, &k); Moblus(k); while(T--){ scanf("%d %d", &n, &m); int mmin = min(n, m); LL ans = 0; for(int i = 1, det = 1; i <= mmin; i = det + 1){ det = min(n/(n/i), m/(m/i)); ans = (ans + (f[det] - f[i-1]) * (n/i) % mod * (m/i)) % mod; } printf("%lld ", (ans+mod)%mod); } return 0; }