题意:给定一个 n 个结点的有向图,然后从 1 结点出发,从每个结点向每个后继结点的概率是相同的,当走到一个没有后继结点后,那么程序终止,然后问你经过每个结点的期望是次数是多少。
析:假设 i 结点的出度为 di,期望执行次数为 xi,对于一个有 n 个前继结点的 a1, a2, a3 ... an 的结点 i,可以列出方程 xi = xa1/da1 + xa2/da2 + .. + xan/dan,根据每个结点都可以列出一个方程,然后就有 n 个方程,其中结点 1 比较特殊,因为是由它开始的所以看作它有一个前继虚拟结点 0,而 0 只执行一次,所以有 n 个前继结点的 a1, a2, a3 ... an 的结点 1,可以列出方程 x1 = xa1/da1 + xa2/da2 + .. + xan/dan + 1,注意末尾有一个 1,然后就有 n 个方程,然后用高斯消元-约当消元法,注意的是此题可能有无穷多解,和惟一解,多解也就是说最后所以得到的增广矩阵 A[i][i] = 0 && A[i][n] != 0,这样就是无穷大的答案,再就是 A[i][i] = 0 && A[i][n] = 0,这样的话答案就是 0。
代码如下:
#pragma comment(linker, "/STACK:1024000000,1024000000") #include <cstdio> #include <string> #include <cstdlib> #include <cmath> #include <iostream> #include <cstring> #include <set> #include <queue> #include <algorithm> #include <vector> #include <map> #include <cctype> #include <cmath> #include <stack> #include <sstream> #include <list> #include <assert.h> #include <bitset> #include <numeric> #define debug() puts("++++") #define gcd(a, b) __gcd(a, b) #define lson l,m,rt<<1 #define rson m+1,r,rt<<1|1 #define fi first #define se second #define pb push_back #define sqr(x) ((x)*(x)) #define ms(a,b) memset(a, b, sizeof a) #define sz size() #define pu push_up #define pd push_down #define cl clear() #define lowbit(x) -x&x //#define all 1,n,1 #define FOR(i,n,x) for(int i = (x); i < (n); ++i) #define freopenr freopen("in.in", "r", stdin) #define freopenw freopen("out.out", "w", stdout) using namespace std; typedef long long LL; typedef unsigned long long ULL; typedef pair<int, int> P; const int INF = 0x3f3f3f3f; const LL LNF = 1e17; const double inf = 1e20; const double PI = acos(-1.0); const double eps = 1e-8; const int maxn = 100 + 5; const int maxm = 1e6 + 2; const LL mod = 1000000007; const int dr[] = {-1, 1, 0, 0, 1, 1, -1, -1}; const int dc[] = {0, 0, 1, -1, 1, -1, 1, -1}; const char *de[] = {"0000", "0001", "0010", "0011", "0100", "0101", "0110", "0111", "1000", "1001", "1010", "1011", "1100", "1101", "1110", "1111"}; int n, m; const int mon[] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; const int monn[] = {0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; inline bool is_in(int r, int c) { return r >= 0 && r < n && c >= 0 && c < m; } vector<int> G[maxn]; int d[maxn]; bool ok[maxn]; double A[maxn][maxn]; void solve(){ for(int i = 0; i < n; ++i){ int r = i; for(int j = i+1; j < n; ++j) if(fabs(A[j][i]) > fabs(A[r][i])) r = j; if(fabs(A[r][i]) < eps) continue; if(r != i) for(int j = i; j <= n; ++j) swap(A[r][j], A[i][j]); for(int k = 0; k < n; ++k) if(k != i) for(int j = n; j >= i; --j) A[k][j] -= A[k][i] / A[i][i] * A[i][j]; } } int main(){ int kase = 0; while(scanf("%d", &n) == 1 && n){ for(int i = 0; i < n; ++i) G[i].cl; ms(d, 0); ms(ok, 0); ms(A, 0); A[0][n] = 1.; int a, b; while(scanf("%d %d", &a, &b) == 2 && a+b){ G[b-1].pb(a-1); ++d[a-1]; } for(int i = 0; i < n; ++i){ A[i][i] = 1.; for(int j = 0; j < G[i].sz; ++j) A[i][G[i][j]] -= 1. / d[G[i][j]]; } solve(); for(int i = n-1; i >= 0; --i){ if(fabs(A[i][i]) < eps && fabs(A[i][n]) > eps){ ok[i] = true; continue; } for(int j = i+1; j < n; ++j) if(fabs(A[i][j]) > eps && ok[j]) ok[i] = true; } printf("Case #%d: ", ++kase); scanf("%d", &m); int x; while(m-- && scanf("%d", &x) == 1) if(ok[x-1]) puts("infinity"); else if(fabs(A[x-1][x-1]) < eps) printf("0.000 "); else printf("%.3f ", A[x-1][n] / A[x-1][x-1]); } return 0; }