zoukankan      html  css  js  c++  java
  • UVa 11481 Arrange the Numbers (组合数学)

    题意:给定 n,m,k,问你在 1 ~ n 的排列中,前 m 个恰好有 k 个不在自己位置的排列有多少个。

    析:枚举 m+1 ~ n 中有多少个恰好在自己位置,这个是C(n-m, i),然后前面选出 k 个,是C(m, k),剩下 n - k - i 个是都不在自己位置,也就是错排 D[n-k-i],求一个和就Ok了。

    代码如下:

    #pragma comment(linker, "/STACK:1024000000,1024000000")
    #include <cstdio>
    #include <string>
    #include <cstdlib>
    #include <cmath>
    #include <iostream>
    #include <cstring>
    #include <set>
    #include <queue>
    #include <algorithm>
    #include <vector>
    #include <map>
    #include <cctype>
    #include <cmath>
    #include <stack>
    #include <sstream>
    #include <list>
    #include <assert.h>
    #include <bitset>
    #include <numeric>
    #define debug() puts("++++")
    #define gcd(a, b) __gcd(a, b)
    #define lson l,m,rt<<1
    #define rson m+1,r,rt<<1|1
    #define fi first
    #define se second
    #define pb push_back
    #define sqr(x) ((x)*(x))
    #define ms(a,b) memset(a, b, sizeof a)
    #define sz size()
    #define be begin()
    #define ed end()
    #define pu push_up
    #define pd push_down
    #define cl clear()
    #define lowbit(x) -x&x
    //#define aLL 1,n,1
    #define FOR(i,n,x)  for(int i = (x); i < (n); ++i)
    #define freopenr freopen("in.in", "r", stdin)
    #define freopenw freopen("out.out", "w", stdout)
    using namespace std;
    
    typedef long long LL;
    typedef unsigned long long ULL;
    typedef pair<int, int> P;
    const int INF = 0x3f3f3f3f;
    const LL LNF = 1e17;
    const double inf = 1e20;
    const double PI = acos(-1.0);
    const double eps = 1e-6;
    const int maxn = 1000 + 10;
    const int maxm = 76543;
    const int mod = 1000000007;
    const int dr[] = {-1, 1, 0, 0, 1, 1, -1, -1};
    const int dc[] = {0, 0, 1, -1, 1, -1, 1, -1};
    const char *de[] = {"0000", "0001", "0010", "0011", "0100", "0101", "0110", "0111", "1000", "1001", "1010", "1011", "1100", "1101", "1110", "1111"};
    int n, m;
    const int mon[] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
    const int monn[] = {0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
    inline bool is_in(int r, int c) {
      return r >= 0 && r < n && c >= 0 && c < m;
    }
    inline int readInt(){ int x;  scanf("%d", &x);  return x; }
    
    int f[maxn], D[maxn], inv[maxn];
    
    int fast_pow(int a, int n){
      int res = 1;
      while(n){
        if(n&1)  res = (LL)res * a % mod;
        n >>= 1;
        a = (LL)a * a % mod;
      }
      return res;
    }
    
    int main(){
      D[1] = 0;  D[0] = D[2] = 1;
      f[0] = f[1] = 1;  f[2] = 2;
      for(int i = 3; i <= 1000; ++i){
        f[i] = (LL)f[i-1] * i % mod;
        D[i] = (LL)(i-1) * (D[i-1] + D[i-2]) % mod;
      }
      inv[1000] = fast_pow(f[1000], mod-2);
      for(int i = 999; i >= 0; --i)
        inv[i] = (LL)(i+1) * inv[i+1] % mod;
      int T, k;  cin >> T;
      for(int kase = 1; kase <= T; ++kase){
        scanf("%d %d %d", &n, &m, &k);
        int ans = 0;
        int cmk = (LL)f[m] * inv[k] % mod * inv[m-k] % mod;
        for(int i = 0; i <= n-m; ++i)
          ans = (ans + (LL)cmk * f[n-m] % mod * inv[i] % mod * inv[n-m-i] % mod * D[n-k-i] % mod) % mod;
        printf("Case %d: %d
    ", kase, ans);
      }
      return 0;
    }
    

      

  • 相关阅读:
    【转】70个经典的 Shell 脚本面试问题
    【转】最牛B的编码套路
    【转】Flex 布局语法教程
    【转】程序员7大软技能测验 你得几分?
    【转】为什么事务日志自动增长会降低你的性能
    【hive】——metastore的三种模式
    【hive】——Hive基本操作
    【hive】——Hive初始了解
    【hive】——Hive四种数据导入方式
    【hive】——Hive sql语法详解
  • 原文地址:https://www.cnblogs.com/dwtfukgv/p/8933804.html
Copyright © 2011-2022 走看看