题意:给定一个数 n,求 0 ~ n,中二进制表示中连续两个 1 出现的次数。
析:枚举连续的两个 1,从低位向高位进行枚举,然后前可以是任意数,后面也是任意的,如果 n 正好是 11 还要另算,举个例子。
10110,假设现在枚举第 2 位和第 3 位,那么出现的次次数就是前面的 10,还有第一位是任意的,所以就有 10 = 2 * 2 = 4 种,而且正好第 2 位和第 3 位是 1,那么对于第一位也是是随便的,再加上 2。
代码如下:
#pragma comment(linker, "/STACK:1024000000,1024000000") #include <cstdio> #include <string> #include <cstdlib> #include <cmath> #include <iostream> #include <cstring> #include <set> #include <queue> #include <algorithm> #include <vector> #include <map> #include <cctype> #include <cmath> #include <stack> #include <sstream> #include <list> #include <assert.h> #include <bitset> #include <numeric> #define debug() puts("++++") #define gcd(a, b) __gcd(a, b) #define lson l,m,rt<<1 #define rson m+1,r,rt<<1|1 #define fi first #define se second #define pb push_back #define sqr(x) ((x)*(x)) #define ms(a,b) memset(a, b, sizeof a) #define sz size() #define be begin() #define ed end() #define pu push_up #define pd push_down #define cl clear() #define lowbit(x) -x&x //#define all 1,n,1 #define FOR(i,n,x) for(int i = (x); i < (n); ++i) #define freopenr freopen("in.in", "r", stdin) #define freopenw freopen("out.out", "w", stdout) using namespace std; typedef long long LL; typedef unsigned long long ULL; typedef pair<int, int> P; const int INF = 0x3f3f3f3f; const LL LNF = 1e17; const double inf = 1e20; const double PI = acos(-1.0); const double eps = 1e-8; const int maxn = 1500 + 50; const int maxm = 1e6 + 10; const LL mod = 1000000000000000LL; const int dr[] = {-1, 1, 0, 0, 1, 1, -1, -1}; const int dc[] = {0, 0, 1, -1, 1, -1, 1, -1}; const char *de[] = {"0000", "0001", "0010", "0011", "0100", "0101", "0110", "0111", "1000", "1001", "1010", "1011", "1100", "1101", "1110", "1111"}; int n, m; const int mon[] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; const int monn[] = {0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; inline bool is_in(int r, int c) { return r >= 0 && r < n && c >= 0 && c < m; } inline int readInt(){ int x; scanf("%d", &x); return x; } LL p, q; void add(LL x){ q += x; p += q / mod; q %= mod; } int main(){ int kase = 0; LL n; while(cin >> n && n >= 0){ p = q = 0; LL m = 1LL, t = n; while(n){ add((n>>2) * m); if((n&3) == 3) add((t&m-1) + 1); n >>= 1; m <<= 1; } printf("Case %d: ", ++kase); if(p) printf("%lld%015lld ", p, q); else printf("%lld ", q); } return 0; }