zoukankan      html  css  js  c++  java
  • CodeForces 935E Fafa and Ancient Mathematics (树形DP)

    题意:给定一个表达式,然后让你添加 n 个加号,m 个减号,使得表达式的值最大。

    析:首先先要建立一个表达式树,这个应该很好建立,就不说了,dp[u][i][0] 表示 u 这个部分表达式,添加 i 个符号,使值最大,dp[u][i][1] 表示 u 个部分表达式,添加 i 个符号,使用值最小,这里添加的符号可能是加号,也可以是减号,就是最小的那个,因为题目说了min(n, m) <= 100,一开始我没看到,就 WA8 了。然后在状转移的时候,分成两类,一类是添加的是加号,那么 dp[u][i][0] = max{dp[lson][j][0] + dp[rson][i-j][0], dp[lson][j][0] - dp[rson][i-j-1][1] },同理可以得到添加减号的时候。

    代码如下:

    #pragma comment(linker, "/STACK:1024000000,1024000000")
    #include <cstdio>
    #include <string>
    #include <cstdlib>
    #include <cmath>
    #include <iostream>
    #include <cstring>
    #include <set>
    #include <queue>
    #include <algorithm>
    #include <vector>
    #include <map>
    #include <cctype>
    #include <cmath>
    #include <stack>
    #include <sstream>
    #include <list>
    #include <assert.h>
    #include <bitset>
    #include <numeric>
    #define debug() puts("++++")
    #define gcd(a, b) __gcd(a, b)
    #define lson l,m,rt<<1
    #define rson m+1,r,rt<<1|1
    #define fi first
    #define se second
    #define pb push_back
    #define sqr(x) ((x)*(x))
    #define ms(a,b) memset(a, b, sizeof a)
    #define sz size()
    #define be begin()
    #define ed end()
    #define pu push_up
    #define pd push_down
    #define cl clear()
    #define lowbit(x) -x&x
    //#define all 1,n,1
    #define FOR(i,n,x)  for(int i = (x); i < (n); ++i)
    #define freopenr freopen("in.in", "r", stdin)
    #define freopenw freopen("out.out", "w", stdout)
    using namespace std;
    
    typedef long long LL;
    typedef unsigned long long ULL;
    typedef pair<int, int> P;
    const int INF = 0x3f3f3f3f;
    const LL LNF = 1e17;
    const double inf = 1e20;
    const double PI = acos(-1.0);
    const double eps = 1e-8;
    const int maxn = 1e4 + 20;
    const int maxm = 1e6 + 10;
    const LL mod = 1000000000000000LL;
    const int dr[] = {-1, 1, 0, 0, 1, 1, -1, -1};
    const int dc[] = {0, 0, 1, -1, 1, -1, 1, -1};
    const char *de[] = {"0000", "0001", "0010", "0011", "0100", "0101", "0110", "0111", "1000", "1001", "1010", "1011", "1100", "1101", "1110", "1111"};
    int n, m;
    const int mon[] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
    const int monn[] = {0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
    inline bool is_in(int r, int c) {
      return r >= 0 && r < n && c >= 0 && c < m;
    }
    inline int readInt(){ int x;  scanf("%d", &x);  return x; }
    
    
    int ch[maxn][2];
    int num[maxn];
    string s;
    int rt, x;
    
    
    void dfs(int l, int r, int &rt){
      if(l == r){
        rt = l;
        ms(ch[rt], -1);
        return ;
      }
      int det = 0;
      for(int i = l; i <= r; ++i)
        if(s[i] == '(')  ++det;
        else if(s[i] == ')')  --det;
        else if(s[i] == '?' && det == 1){
          rt = i;
          dfs(l+1, i-1, ch[i][0]);
          dfs(i+1, r-1, ch[i][1]);
          num[rt] = num[ch[i][0]] + num[ch[i][1]] + 1;
          return ;
        }
    }
    
    int dp[maxn][105][2];
    
    void dfs(int u){
      if(ch[u][0] == -1){
        dp[u][0][0] = dp[u][0][1] = s[u] - '0';
        return ;
      }
      int tt = min(num[u], x);
      int ls = ch[u][0], rs = ch[u][1];
      int t = min(tt, num[ls]);
      dfs(ls);  dfs(rs);
      for(int i = 0; i <= tt; ++i){
        int &mmax = dp[u][i][0];  mmax = -INF;
        int &mmin = dp[u][i][1];  mmin = INF;
        for(int j = 0; j <= t; ++j){
          if(i - j > 0 && i - j - 1 <= min(x, num[rs]))  mmax = max(mmax, dp[ls][j][0] + (n <= m ? dp[rs][i-j-1][0] : -dp[rs][i-j-1][1]));
          if(i - j >= 0 && i - j <= min(num[rs], x))  mmax = max(mmax, dp[ls][j][0] - (n <= m ? dp[rs][i-j][1] : -dp[rs][i-j][0]));
    
          if(i - j > 0 && i - j - 1 <= min(x, num[rs]))  mmin = min(mmin, dp[ls][j][1] + (n <= m ? dp[rs][i-j-1][1] : -dp[rs][i-j-1][0]));
          if(i - j >= 0 && i - j <= min(num[rs], x))  mmin = min(mmin, dp[ls][j][1] - (n <= m ? dp[rs][i-j][0] : -dp[rs][i-j][1]));
        }
      }
    }
    
    int main(){
      cin >> s;
      cin >> n >> m;
      x = min(m, n);
      dfs(0, s.sz-1, rt);
      dfs(rt);
      cout << dp[rt][x][0] << endl;
      return 0;
    }
    

      

  • 相关阅读:
    LeetCode Subsets II
    LeetCode Rotate Image
    LeetCode Palidrome Number
    LeetCode Generate Parentheses
    LeetCode Maximum Subarray
    LeetCode Set Matrix Zeroes
    LeetCode Remove Nth Node From End of List
    Linux Loop设备 使用
    Linux 文件系统大小调整
    LeetCode N-Queens II
  • 原文地址:https://www.cnblogs.com/dwtfukgv/p/9078281.html
Copyright © 2011-2022 走看看