zoukankan      html  css  js  c++  java
  • POJ_1284 Primitive Roots 【原根性质+欧拉函数运用】

    一、题目

    We say that integer x, 0 < x < p, is a primitive root modulo odd prime p if and only if the set { (x i mod p) | 1 <= i <= p-1 } is equal to { 1, ..., p-1 }. For example, the consecutive powers of 3 modulo 7 are 3, 2, 6, 4, 5, 1, and thus 3 is a primitive root modulo 7. 
    Write a program which given any odd prime 3 <= p < 65536 outputs the number of primitive roots modulo p. 

    Input

    Each line of the input contains an odd prime numbers p. Input is terminated by the end-of-file seperator.

    Output

    For each p, print a single number that gives the number of primitive roots in a single line.

    Sample Input

    23
    31
    79
    

    Sample Output

    10
    8
    24

    二、题意分析

    原根并不像百度介绍的那样,需要深入去研究。直接上干货,《初等数论及应用》(第六版)P260 定理9.5

    如果正整数n有一个原根,那么它一共有φ(φ(n))个不同的原根。

    对应该题目,因为给的p是奇素数,所以答案就是φ(p-1)

    三、代码

    #include <iostream>
    #include <cstring>
    using namespace std;
    
    const int MAXN = 66000;
    int Prime[MAXN], nPrime;
    bool isPrime[MAXN];
    
    void make_prime()
    {
        memset(isPrime, 1, sizeof(isPrime));
        nPrime = 0;
        isPrime[0] = isPrime[1] = 0;
        for(int i = 2; i < MAXN; i++)
        {
            if(isPrime[i])
                Prime[nPrime++] = i;
            for(int j = 0; j < nPrime && (long long)i*Prime[j] < MAXN; j++)
            {
                isPrime[i*Prime[j]] = 0;
                if(i%Prime[j] == 0)
                    break;
            }
        }
    }
    
    int Euler(int p)
    {
        int ans = p;
        for(int i = 0; Prime[i]*Prime[i] <= p ; i++)
        {
            if( p % Prime[i] == 0)
            {
                ans = ans - ans/Prime[i];
                do
                {
                    p /= Prime[i];
                }while(p%Prime[i] == 0);
            }
        }
        if(p > 1)
            ans = ans - ans/p;
        return ans;
    }
    
    int main()
    {
        int p;
        make_prime();
        while( cin >> p )
        {
            cout << Euler(p-1) << endl;
        }
        return 0;
    }
    

      

  • 相关阅读:
    docker容器的本质
    golang 算法题 : 二维数组搜索值
    golang 算法题 : 两数相加
    golang 开源代理
    golang vue 使用 websocket 的例子
    互联网技术部门该如何管理
    大数据清洗第一天
    本周总结
    信息领域热词分析性能分析
    本周总结
  • 原文地址:https://www.cnblogs.com/dybala21/p/9747570.html
Copyright © 2011-2022 走看看