zoukankan      html  css  js  c++  java
  • HDU 1159 Common Subsequence (动态规划、最长公共子序列)

    Common Subsequence

    Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
    Total Submission(s): 55301    Accepted Submission(s): 25537

     

    Problem Description

     

    A subsequence of a given sequence is the given sequence with some elements (possible none) left out. Given a sequence X = <x1, x2, ..., xm> another sequence Z = <z1, z2, ..., zk> is a subsequence of X if there exists a strictly increasing sequence <i1, i2, ..., ik> of indices of X such that for all j = 1,2,...,k, xij = zj. For example, Z = <a, b, f, c> is a subsequence of X = <a, b, c, f, b, c> with index sequence <1, 2, 4, 6>. Given two sequences X and Y the problem is to find the length of the maximum-length common subsequence of X and Y.
    The program input is from a text file. Each data set in the file contains two strings representing the given sequences. The sequences are separated by any number of white spaces. The input data are correct. For each set of data the program prints on the standard output the length of the maximum-length common subsequence from the beginning of a separate line.

    Sample Input

    abcfbc abfcab
    programming contest 
    abcd mnp

    Sample Output

    4
    2
    0

    题目大意与分析

    就是求最长公共子序列,动态规划即可。

    dp[i][j]代表A序列前i-1个元素与B序列前j-1个元素的最长公共子序列的个数,两层循环,相等就++,否则取当前最大的

    代码

    #include<bits/stdc++.h>
    
    using namespace std;
    
    string x,y;
    int i,j,dp[1005][1005];
    
    int main()
    {
        while(cin>>x>>y)
        {
            memset(dp,0,sizeof(dp));
            for(i=0;i<x.size();i++)
            {
                for(j=0;j<y.size();j++)
                {
                    if(x[i]==y[j])
                    dp[i+1][j+1]=dp[i][j]+1;
                    else
                    dp[i+1][j+1]=max(dp[i+1][j],dp[i][j+1]);
                }
            }
            cout<<dp[x.size()][y.size()]<<endl;
        }
    }

     

  • 相关阅读:
    原来针对新唐mcu,keil有免费许可
    使用IAR在开发nordic问题记录
    arm的开发工具
    nordic芯片开发——烧写方法记录
    生活感想(三)——心理学其实很有用
    生活感想(二)——心理学其实很有用
    多线程编程基础知识
    多线程编程简介
    winsock的io模型(终极篇)
    ioctlsocket()函数是干什么用的?它返回值是什么?共有几个参数?它的各个参数是干什么用的?
  • 原文地址:https://www.cnblogs.com/dyhaohaoxuexi/p/11392138.html
Copyright © 2011-2022 走看看