Asteroids!
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 7089 Accepted Submission(s): 4386
Problem Description
You're in space.
You want to get home.
There are asteroids.
You don't want to hit them.
You want to get home.
There are asteroids.
You don't want to hit them.
Input
Input
to this problem will consist of a (non-empty) series of up to 100 data
sets. Each data set will be formatted according to the following
description, and there will be no blank lines separating data sets.
A single data set has 5 components:
Start line - A single line, "START N", where 1 <= N <= 10.
Slice list - A series of N slices. Each slice is an N x N matrix representing a horizontal slice through the asteroid field. Each position in the matrix will be one of two values:
'O' - (the letter "oh") Empty space
'X' - (upper-case) Asteroid present
Starting Position - A single line, "A B C", denoting the <A,B,C> coordinates of your craft's starting position. The coordinate values will be integers separated by individual spaces.
Target Position - A single line, "D E F", denoting the <D,E,F> coordinates of your target's position. The coordinate values will be integers separated by individual spaces.
End line - A single line, "END"
The origin of the coordinate system is <0,0,0>. Therefore, each component of each coordinate vector will be an integer between 0 and N-1, inclusive.
The first coordinate in a set indicates the column. Left column = 0.
The second coordinate in a set indicates the row. Top row = 0.
The third coordinate in a set indicates the slice. First slice = 0.
Both the Starting Position and the Target Position will be in empty space.
A single data set has 5 components:
Start line - A single line, "START N", where 1 <= N <= 10.
Slice list - A series of N slices. Each slice is an N x N matrix representing a horizontal slice through the asteroid field. Each position in the matrix will be one of two values:
'O' - (the letter "oh") Empty space
'X' - (upper-case) Asteroid present
Starting Position - A single line, "A B C", denoting the <A,B,C> coordinates of your craft's starting position. The coordinate values will be integers separated by individual spaces.
Target Position - A single line, "D E F", denoting the <D,E,F> coordinates of your target's position. The coordinate values will be integers separated by individual spaces.
End line - A single line, "END"
The origin of the coordinate system is <0,0,0>. Therefore, each component of each coordinate vector will be an integer between 0 and N-1, inclusive.
The first coordinate in a set indicates the column. Left column = 0.
The second coordinate in a set indicates the row. Top row = 0.
The third coordinate in a set indicates the slice. First slice = 0.
Both the Starting Position and the Target Position will be in empty space.
Output
For each data set, there will be exactly one output set, and there will be no blank lines separating output sets.
A single output set consists of a single line. If a route exists, the line will be in the format "X Y", where X is the same as N from the corresponding input data set and Y is the least number of moves necessary to get your ship from the starting position to the target position. If there is no route from the starting position to the target position, the line will be "NO ROUTE" instead.
A move can only be in one of the six basic directions: up, down, left, right, forward, back. Phrased more precisely, a move will either increment or decrement a single component of your current position vector by 1.
A single output set consists of a single line. If a route exists, the line will be in the format "X Y", where X is the same as N from the corresponding input data set and Y is the least number of moves necessary to get your ship from the starting position to the target position. If there is no route from the starting position to the target position, the line will be "NO ROUTE" instead.
A move can only be in one of the six basic directions: up, down, left, right, forward, back. Phrased more precisely, a move will either increment or decrement a single component of your current position vector by 1.
Sample Input
START 1
O
0 0 0
0 0 0
END
START 3
XXX
XXX
XXX
OOO
OOO
OOO
XXX
XXX
XXX
0 0 1
2 2 1
END
START 5
OOOOO
OOOOO
OOOOO
OOOOO
OOOOO
OOOOO
OOOOO
OOOOO
OOOOO
OOOOO
XXXXX
XXXXX
XXXXX
XXXXX
XXXXX
OOOOO
OOOOO
OOOOO
OOOOO
OOOOO
OOOOO
OOOOO
OOOOO
OOOOO
OOOOO
0 0 0
4 4 4
END
Sample Output
1 0
3 4
NO ROUTE
题目大意与分析
给出三维的地图,x不能走,o可以走,bfs做即可,需要注意的是,地图是按照切面给的,所以在读地图的时候,首先遍历的应该是z轴
#include<bits/stdc++.h> using namespace std; int f[3][6]={1,-1,0,0,0,0,0,0,1,-1,0,0,0,0,0,0,1,-1},vis[20][20][20],mp[20][20][20],n,i,j,k,sx,sy,sz,px,py,pz,anss; char x; string s; int main() { while(cin>>s>>n) { anss=-1; memset(vis,0,sizeof(vis)); queue<int>q; for(i=0;i<n;i++) { for(j=0;j<n;j++) { for(k=0;k<n;k++) { cin>>x; if(x=='O') mp[j][k][i]=1; else mp[j][k][i]=0; } } } cin>>sx>>sy>>sz; cin>>px>>py>>pz; q.push(sx); q.push(sy); q.push(sz); q.push(0); vis[sx][sy][sz]=1; while(!q.empty()) { int x=q.front(); q.pop(); int y=q.front(); q.pop(); int z=q.front(); q.pop(); int step=q.front(); q.pop(); if(x==px&&y==py&&z==pz) { anss=step; break; } for(i=0;i<6;i++) { int xx=x+f[0][i]; int yy=y+f[1][i]; int zz=z+f[2][i]; if(xx>=0&&xx<n&&yy>=0&&yy<n&&zz>=0&&zz<n&&mp[xx][yy][zz]==1&&vis[xx][yy][zz]==0) { q.push(xx); q.push(yy); q.push(zz); q.push(step+1); vis[xx][yy][zz]=1; } } } cin>>s; if(anss!=-1) { cout<<n<<' '<<anss<<endl; } else { cout<<"NO ROUTE"<<endl; } } }