zoukankan      html  css  js  c++  java
  • POJ 1077 Eight(bfs+康托展开)

    Eight
    Time Limit: 1000MS   Memory Limit: 65536K
    Total Submissions: 41040   Accepted: 16901   Special Judge

    Description

    The 15-puzzle has been around for over 100 years; even if you don't know it by that name, you've seen it. It is constructed with 15 sliding tiles, each with a number from 1 to 15 on it, and all packed into a 4 by 4 frame with one tile missing. Let's call the missing tile 'x'; the object of the puzzle is to arrange the tiles so that they are ordered as:
     1  2  3  4 
    
    5 6 7 8
    9 10 11 12
    13 14 15 x

    where the only legal operation is to exchange 'x' with one of the tiles with which it shares an edge. As an example, the following sequence of moves solves a slightly scrambled puzzle:
     1  2  3  4    1  2  3  4    1  2  3  4    1  2  3  4 
    
    5 6 7 8 5 6 7 8 5 6 7 8 5 6 7 8
    9 x 10 12 9 10 x 12 9 10 11 12 9 10 11 12
    13 14 11 15 13 14 11 15 13 14 x 15 13 14 15 x
    r-> d-> r->

    The letters in the previous row indicate which neighbor of the 'x' tile is swapped with the 'x' tile at each step; legal values are 'r','l','u' and 'd', for right, left, up, and down, respectively.

    Not all puzzles can be solved; in 1870, a man named Sam Loyd was famous for distributing an unsolvable version of the puzzle, and
    frustrating many people. In fact, all you have to do to make a regular puzzle into an unsolvable one is to swap two tiles (not counting the missing 'x' tile, of course).

    In this problem, you will write a program for solving the less well-known 8-puzzle, composed of tiles on a three by three
    arrangement.

    Input

    You will receive a description of a configuration of the 8 puzzle. The description is just a list of the tiles in their initial positions, with the rows listed from top to bottom, and the tiles listed from left to right within a row, where the tiles are represented by numbers 1 to 8, plus 'x'. For example, this puzzle
     1  2  3 
    
    x 4 6
    7 5 8

    is described by this list:

    1 2 3 x 4 6 7 5 8

    Output

    You will print to standard output either the word ``unsolvable'', if the puzzle has no solution, or a string consisting entirely of the letters 'r', 'l', 'u' and 'd' that describes a series of moves that produce a solution. The string should include no spaces and start at the beginning of the line.

    Sample Input

     2  3  4  1  5  x  7  6  8 

    Sample Output

    ullddrurdllurdruldr

    题目大意与分析

    输入一个3x3的棋盘,每次将0上下左右移动,直到变换成为123456780的状态,求最短路线

    BFS+Contor变换,康托展开公式:

     以此求得的是在当前状态前面的状态数量

    #include <iostream>
    #include <cstring>
    #include <algorithm>
    #include <cstdio>
    #include <vector>
    #include <queue>
    #include <string> 
    using namespace std;
    
    struct node
    {
        int s[9];
        string road;
        int order;
        int add0;
    };
    struct node start;
    int jiecheng[10],f[2][4]={0,0,-1,1,-1,1,0,0},vis[400005],flag=0;
    string anss;
    char fang[5]="lrud";
    int Contor(int s[],int n)
    {
        int order=0;
        for(int i=0;i<n;i++)
        {
            int num=0;
            for(int j=i+1;j<n;j++)
            {
                if(s[j]<s[i])
                num++;
            }
            order+=num*jiecheng[n-i-1];
        }
        return order+1;
    }
    
    void bfs()
    {
        queue<struct node>q;
        q.push(start);
        vis[start.order]=1;
        while(!q.empty())
        {
            struct node now=q.front();
            if(now.order==46234)
            {
                flag=1;
                anss=now.road;
                break;
            }
            q.pop();
            int x=now.add0/3;
            int y=now.add0%3;
            int i;
            for(i=0;i<4;i++)
            {
                int xx=x+f[0][i];
                int yy=y+f[1][i];
                if(xx>=0&&xx<3&&yy>=0&&yy<3)
                {
                    int add1=xx*3+yy;
                    struct node next=now;
                    next.add0=add1;
                    next.s[now.add0]=next.s[add1];
                    next.s[add1]=0;
                    next.add0=add1;
                    next.order=Contor(next.s,9);
                    if(vis[next.order]==0)
                    {
                        vis[next.order]=1;
                        next.road=now.road+fang[i];
                        q.push(next);
                    }
                }
            }
        }
    }
    
    int main()
    {
        char x;
        for(int i=0;i<9;i++)
        {
            cin>>x;
            if(x=='x')
            {
                start.s[i]=0;
                start.add0=i;
            }
            else
            start.s[i]=x-'0';
        }
        start.order=Contor(start.s,9);
        jiecheng[0]=1;
        for(int i=1;i<=9;i++)
        {
            jiecheng[i]=i*jiecheng[i-1];
        }
        bfs();
        if(flag)
        cout<<anss<<endl;
        else
        cout<<"unsolvable"<<endl;
     } 
  • 相关阅读:
    12.python笔记之mysqldb模块
    13.python笔记之pyyaml模块
    11.python之线程,协程,进程,
    2.saltstack笔记之目标,模块,返回写入数据库
    6.django笔记之orm
    5.django笔记之form保存表单信息,动态select
    4.django笔记之admin
    docker批量删除none镜像
    docker 给none镜像打镜像
    jenkins卡在等待界面解决方法
  • 原文地址:https://www.cnblogs.com/dyhaohaoxuexi/p/12655476.html
Copyright © 2011-2022 走看看