zoukankan      html  css  js  c++  java
  • Python并发编程之线程池/进程池--concurrent.futures模块

    一、关于concurrent.futures模块

      

      Python标准库为我们提供了threading和multiprocessing模块编写相应的多线程/多进程代码,但是当项目达到一定的规模,频繁创建/销毁进程或者线程是非常消耗资源的,这个时候我们就要编写自己的线程池/进程池,以空间换时间。但从Python3.2开始,标准库为我们提供了concurrent.futures模块,它提供了ThreadPoolExecutor和ProcessPoolExecutor两个类,实现了对threading和multiprocessing的进一步抽象,对编写线程池/进程池提供了直接的支持。

    1.Executor和Future:

      concurrent.futures模块的基础是Exectuor,Executor是一个抽象类,它不能被直接使用。但是它提供的两个子类ThreadPoolExecutor和ProcessPoolExecutor却是非常有用,顾名思义两者分别被用来创建线程池和进程池的代码。我们可以将相应的tasks直接放入线程池/进程池,不需要维护Queue来操心死锁的问题,线程池/进程池会自动帮我们调度。

      Future这个概念相信有java和nodejs下编程经验的朋友肯定不陌生了,你可以把它理解为一个在未来完成的操作,这是异步编程的基础,传统编程模式下比如我们操作queue.get的时候,在等待返回结果之前会产生阻塞,cpu不能让出来做其他事情,而Future的引入帮助我们在等待的这段时间可以完成其他的操作。

      p.s: 如果你依然在坚守Python2.x,请先安装futures模块。

    pip install futures 

    二、操作线程池/进程池

    1.使用submit来操作线程池/进程池:

    # 线程池:
    from concurrent.futures import ThreadPoolExecutor
    import urllib.request
    URLS = ['http://www.163.com', 'https://www.baidu.com/', 'https://github.com/']
    def load_url(url):
        with urllib.request.urlopen(url, timeout=60) as conn:
            print('%r page is %d bytes' % (url, len(conn.read())))
    
    executor = ThreadPoolExecutor(max_workers=3)
    
    for url in URLS:
        future = executor.submit(load_url,url)
        print(future.done())
    
    print('主线程')
    
    # 运行结果:
    False
    False
    False
    主线程
    'https://www.baidu.com/' page is 227 bytes
    'http://www.163.com' page is 662047 bytes
    'https://github.com/' page is 54629 bytes

      我们根据运行结果来分析一下。我们使用submit方法来往线程池中加入一个task,submit返回一个Future对象,对于Future对象可以简单地理解为一个在未来完成的操作。由于线程池异步提交了任务,主线程并不会等待线程池里创建的线程执行完毕,所以执行了print('主线程'),相应的线程池中创建的线程并没有执行完毕,故future.done()返回结果为False。

    # 进程池:同上
    from concurrent.futures import ProcessPoolExecutor
    import urllib.request
    URLS = ['http://www.163.com', 'https://www.baidu.com/', 'https://github.com/']
    def load_url(url):
        with urllib.request.urlopen(url, timeout=60) as conn:
            print('%r page is %d bytes' % (url, len(conn.read())))
    
    executor = ProcessPoolExecutor(max_workers=3)
    if __name__ == '__main__': # 要加main
    
        for url in URLS:
            future = executor.submit(load_url,url)
            print(future.done())
        print('主线程')
    
    #运行结果:
    False  # 子进程只完成创建,并没有执行完成
    False 
    False
    主线程 # 子进程创建完成就会向下执行主线程,并不会等待子进程执行完毕
    'http://www.163.com' page is 662049 bytes
    'https://www.baidu.com/' page is 227 bytes
    'https://github.com/' page is 54629 bytes

    2.使用map来操作线程池/进程池:

      除了submit,Exectuor还为我们提供了map方法,和内建的map用法类似:

    from concurrent.futures import ThreadPoolExecutor
    import urllib.request
    URLS = ['http://www.163.com', 'https://www.baidu.com/', 'https://github.com/']
    def load_url(url):
        with urllib.request.urlopen(url, timeout=60) as conn:
            print('%r page is %d bytes' % (url, len(conn.read())))
    
    executor = ThreadPoolExecutor(max_workers=3)
    
    executor.map(load_url,URLS)
    
    print('主线程')
    
    # 运行结果:
    主线程
    'http://www.163.com' page is 662047 bytes
    'https://www.baidu.com/' page is 227 bytes
    'https://github.com/' page is 54629 bytes

      从运行结果可以看出,map是按照URLS列表元素的顺序返回的,并且写出的代码更加简洁直观,我们可以根据具体的需求任选一种。

    3.wait:

      wait方法接会返回一个tuple(元组),tuple中包含两个set(集合),一个是completed(已完成的)另外一个是uncompleted(未完成的)。使用wait方法的一个优势就是获得更大的自由度,它接收三个参数FIRST_COMPLETED, FIRST_EXCEPTIONALL_COMPLETE,默认设置为ALL_COMPLETED。

      如果采用默认的ALL_COMPLETED,程序会阻塞直到线程池里面的所有任务都完成,再执行主线程:

    from concurrent.futures import ThreadPoolExecutor,wait,as_completed
    import urllib.request
    URLS = ['http://www.163.com', 'https://www.baidu.com/', 'https://github.com/']
    def load_url(url):
        with urllib.request.urlopen(url, timeout=60) as conn:
            print('%r page is %d bytes' % (url, len(conn.read())))
    
    executor = ThreadPoolExecutor(max_workers=3)
    
    f_list = []
    for url in URLS:
        future = executor.submit(load_url,url)
        f_list.append(future)
    print(wait(f_list))
    
    print('主线程')
    
    # 运行结果:
    'http://www.163.com' page is 662047 bytes
    'https://www.baidu.com/' page is 227 bytes
    'https://github.com/' page is 54629 bytes
    DoneAndNotDoneFutures(done={<Future at 0x2d0f898 state=finished returned NoneType>, <Future at 0x2bd0630 state=finished returned NoneType>, <Future at 0x2d27470 state=finished returned NoneType>}, not_done=set())
    主线程

      如果采用FIRST_COMPLETED参数,程序并不会等到线程池里面所有的任务都完成。

    from concurrent.futures import ThreadPoolExecutor,wait,as_completed
    import urllib.request
    URLS = ['http://www.163.com', 'https://www.baidu.com/', 'https://github.com/']
    def load_url(url):
        with urllib.request.urlopen(url, timeout=60) as conn:
            print('%r page is %d bytes' % (url, len(conn.read())))
    
    executor = ThreadPoolExecutor(max_workers=3)
    
    f_list = []
    for url in URLS:
        future = executor.submit(load_url,url)
        f_list.append(future)
    print(wait(f_list,return_when='FIRST_COMPLETED'))
    
    print('主线程')
    
    # 运行结果:
    'http://www.163.com' page is 662047 bytes
    DoneAndNotDoneFutures(done={<Future at 0x2bd15c0 state=finished returned NoneType>}, not_done={<Future at 0x2d0d828 state=running>, <Future at 0x2d27358 state=running>})
    主线程
    'https://www.baidu.com/' page is 227 bytes
    'https://github.com/' page is 54629 bytes

     应用线程池:

    from concurrent.futures import ThreadPoolExecutor,ProcessPoolExecutor
    import requests
    import time,os
    def get_page(url):
        print('<%s> is getting [%s]'%(os.getpid(),url))
        response = requests.get(url)
        if response.status_code==200:  #200代表状态:下载成功了
            return {'url':url,'text':response.text}
    def parse_page(res):
        res = res.result()
        print('<%s> is getting [%s]'%(os.getpid(),res['url']))
        with open('db.txt','a') as f:
            parse_res = 'url:%s size:%s
    '%(res['url'],len(res['text']))
            f.write(parse_res)
    if __name__ == '__main__':
        # p = ThreadPoolExecutor()
        p = ProcessPoolExecutor()
        l = [
            'http://www.baidu.com',
            'http://www.baidu.com',
            'http://www.baidu.com',
            'http://www.baidu.com',
        ]
        for url in l:
            res = p.submit(get_page,url).add_done_callback(parse_page) #这里的回调函数拿到的是一个对象。得
            #  先把返回的res得到一个结果。即在前面加上一个res.result() #谁好了谁去掉回调函数
                                    # 回调函数也是一种编程思想。不仅开线程池用,开线程池也用
        p.shutdown()  #相当于进程池里的close和join
        print('',os.getpid())

      ?写一个小程序对比multiprocessing.pool(ThreadPool)和ProcessPollExecutor(ThreadPoolExecutor)在执行效率上的差距,结合上面提到的Future思考为什么会造成这样的结果?

  • 相关阅读:
    Checking Types Against the Real World in TypeScript
    nexus pip proxy config
    go.rice 强大灵活的golang 静态资源嵌入包
    几个golang 静态资源嵌入包
    rpm 子包创建学习
    Rpm Creating Subpackages
    ava 类似jest snapshot 功能试用
    ava js 测试框架基本试用
    The Architectural Principles Behind Vrbo’s GraphQL Implementation
    graphql-compose graphql schema 生成工具集
  • 原文地址:https://www.cnblogs.com/dylan-wu/p/7163823.html
Copyright © 2011-2022 走看看