zoukankan      html  css  js  c++  java
  • 卷积的定义和概念

      简单定义:卷积是分析数学中一种重要的运算。

    设:f(x),g(x)是R1上的两个可积函数,作积分:
    可以证明,关于几乎所有的实数x,上述积分是存在的。这样,随着x的不同取值,这个积分就定义了一个新函数h(x),称为函数fg的卷积,记为h(x)=(f*g)(x)
    容易验证,(f * g)(x) = (g * f)(x),并且(f * g)(x)仍为可积函数。这就是说,把卷积代替乘法,L1(R1)空间是一个代数,甚至是巴拿赫代数。
    卷积与傅里叶变换有着密切的关系。利用一点性质,即两函数的傅里叶变换的乘积等于它们卷积后的傅里叶变换,能使傅里叶分析中许多问题的处理得到简化。
    由卷积得到的函数f*g一般要比fg都光滑。特别当g为具有紧致集的光滑函数,f为局部可积时,它们的卷积f * g也是光滑函数。利用这一性质,对于任意的可积函数f,都可以简单地构造出一列逼近于f的光滑函数列fs,这种方法称为函数的光滑化或正则化。
    卷积的概念还可以推广到数列、测度以及广义函数上去。
      定义:
    卷积是两个变量在某范围内相乘后求和的结果。如果卷积的变量是序列x(n)和h(n),则卷积的结果
    其中星号*表示卷积。当时序n=0时,序列h(-i)是h(i)的时序i取反的结果;时序取反使得h(i)以纵轴为中心翻转180度,所以这种相乘后求和的计算法称为卷积和,简称卷积。另外,n是使h(-i)位移的量,不同的n对应不同的卷积结果。
    如果卷积的变量是函数x(t)和h(t),则卷积的计算变为
    其中p是积分变量,积分也是求和,t是使函数h(-p)位移的量,星号*表示卷积。
      参考《数字信号处理》杨毅明著,p.55、p.188、p.264,机械工业出版社2012年发行
  • 相关阅读:
    学习Kubernetes,这些负载均衡知识点得知道!
    Nginx请求处理流程
    字节跳动面试题+答案,答对了30+
    Cache 和 Buffer 的区别在哪里
    优化你的HTTPS(下),你需要这么做
    优化你的HTTPS(上),你需要这么做
    swift之Mac中NSSplitView的简单实用
    oc之mac中- NSBox
    Mac之NSImageView的简单实用
    swift之预防 Timer 的循环引用
  • 原文地址:https://www.cnblogs.com/dylancao/p/9100493.html
Copyright © 2011-2022 走看看