zoukankan      html  css  js  c++  java
  • 基于Hadoop的地震数据分析统计

    源码下载地址:http://download.csdn.net/detail/huhui_bj/5645641

    opencsv下载地址:http://download.csdn.net/detail/huhui_bj/5645661

    地震数据下载地址:http://download.csdn.net/detail/huhui_bj/5645685

    1 项目说明

    本文实现的是用Hadoop的MapReduce计算框架,对国内2013年1月至6月这半年以来的地震数据进行了统计和分析。分别按照地震时间和地震地点进行分析。
    地震数据来源于国家地震科学数据共享中心,地址: http://data.earthquake.cn/data/index.jsp?no11&number=28

    2 项目准备

    首先是开发环境,我所使用的是Eclipse开发环境,eclipse中集成了hadoop开发插件。如何安装单机hadoop,请移步 hadoop安装
    从国家地震科学数据共享中心下载下来的数据是excel文件,需要转化成CSV文件,这样便于解析。CSV文件中的数据大约有20000条左右,是这半年以来全国各地的地震情况监测数据。全国各地每天都有很多个小型地震发生。其中大部分发生在地壳深处,没有人能高觉到,尽管如此,地震监听站仍会记录这些小型地震。
    下面是几行地震数据
    日期,时间,纬度(°),经度(°),深度(km),震级类型,震级值,事件类型,参考地名
    2013-06-25,06:04:13.0,10.70,-42.60,10,Ms,6.5,eq,中大西洋海岭北部
    2013-06-24,14:34:48.7,44.33,84.10,6,Ms,4.1,eq,新疆维吾尔自治区塔城地区乌苏市
    2013-06-24,13:02:01.9,44.31,84.17,8,Ms,4.3,eq,新疆维吾尔自治区塔城地区乌苏市
    2013-06-24,11:44:20.8,39.42,95.50,6,Ms,3.4,eq,甘肃省酒泉市肃北蒙古族自治县

    下面,提出两个问题:
    a. 每天有多少次地震发生;
    b. 这六个月的时间内,各个地点总共发生了多少次地震。

    3 程序说明

    3.1 解析CSV文件

    CSV文件前面两行是文件头,其它每一行都是一系列逗号分隔开的数据值。我们只对3列数据感兴趣:日期、地点和震级。为了解析CSV文件,我们使用了一个很棒的开源库opencsv,用它能够很容易的解析CSV文件。
    我们从CSV文件中复制一条数据作为测试数据,确认我们可以用opencsv来获取我们想要的信息。
    /**
     * 测试读取csv文件中的地震数据
     */
    package com.eq.test;
    
    import java.io.IOException;
    
    import au.com.bytecode.opencsv.CSVParser;
    
    public class CSVProcessingTest {
    
    	/**
    	 * @param args
    	 */
    	// 从csv文件复制一行数据
    	private final String LINE = "2013-06-23,22:31:30.3,24.70,99.21,5,ML,1.4,eq,云南施甸";
    
    	public void testReadingOneLine() {
    		String[] lines = null;
    		try {
    			// 用opencsv解析
    			lines = new CSVParser().parseLine(LINE);
    		} catch (IOException e) {
    			// TODO Auto-generated catch block
    			e.printStackTrace();
    		}
    		// 打印解析结果
    		for (String line : lines) {
    			System.out.println(line);
    		}
    	}
    
    	public static void main(String[] args) {
    		// TODO Auto-generated method stub
    		CSVProcessingTest csvProcessingTest = new CSVProcessingTest();
    		csvProcessingTest.testReadingOneLine();
    	}
    
    }
    opencsv处理逗号分隔值值非常简单,该解析器仅返回一组String数组。

    3.2 编写map函数

    EarthQuakeLocationMapper类继承了hadoop的Mapper对象。它指定输出键为一个Text对象,将其值制定为IntWritable,IntWritable实质上是一个整数。而LongWritable和Text分别表示字节数和文本行数。
    /**
     * 统计地震次数的区域的map
     */
    package com.eq.map;
    
    import java.io.IOException;
    
    import org.apache.hadoop.io.IntWritable;
    import org.apache.hadoop.io.LongWritable;
    import org.apache.hadoop.io.Text;
    import org.apache.hadoop.mapreduce.Mapper;
    
    import au.com.bytecode.opencsv.CSVParser;
    
    public class EarthQuakeLocationMapper extends
    		Mapper<LongWritable, Text, Text, IntWritable> {
    	@Override
    	protected void map(LongWritable key, Text value, Context context)
    			throws IOException, InterruptedException {
    		if (key.get() > 0) {
    			String[] lines = new CSVParser().parseLine(value.toString());
    			context.write(new Text(lines[8]), new IntWritable(1));
    		}
    	}
    }
    
    map函数十分简单。首先我们检查字节数(key对象)是否为0,这样可以避免CSV文件头部数据。然后传入地名,设置传出键。就是说,我们为每个地名编写一个计数器,当下文中reduce实现被调用时,获取一个键和一系列值。本例中,键是地名及其值,如下面所示:
    "四川汶川":[1,1,1,1,1,1,1,1]
    "甘肃天祝":[1,1,1,1]
    "广西平果":[1,1,1,1,1,1]
    注意:context.write(new Text(lines[8]), new IntWritable(1))构建了如上面所示的逻辑关系集合。context是一个保存各种信息的hadoop的数据结构。context将被传递到reduce实现,reduce获取这些值为1的值然后叠加起来,算出总数。因此,一个reduce的输出视图将是这样的:
    "四川汶川":[8]
    "甘肃天祝":[4]
    "广西平果":[6]

    3.3 编写reduce函数

    reduce实现如下。与Mapper一样,Reducer被参数化了:前两个参数是传入的键类型(Text)和值类型(IntWritable),后两个参数是输出类型:键和值。
    package com.eq.reduce;
    
    import java.io.IOException;
    
    import org.apache.hadoop.io.IntWritable;
    import org.apache.hadoop.io.Text;
    import org.apache.hadoop.mapreduce.Reducer;
    
    public class EarthQuakeLocationReducer extends
    		Reducer<Text, IntWritable, Text, IntWritable> {
    	@Override
    	protected void reduce(Text key, Iterable<IntWritable> values,
    			Context context) throws IOException, InterruptedException {
    		int count = 0;
    		for (IntWritable value : values) {
    			count++;
    		}
    		if (count >= 10) {
    			context.write(key, new IntWritable(count));
    		}
    	}
    }
    
    reduce的实现也是非常简单的,传入到reduce中实际上是一个值的集合,我们所做的就是将他们加起来,然后写出一个新键值对来表示地点和次数。
    "四川汶川":[1,1,1,1,1,1,1,1]  -->  "四川汶川":8

    3.3 编写Hadoop的Job

    现在我们已经写完了map和reduce,接下来要做的就是将所有这一切链接到一个Hadoop的Job。定义一个Job比较简单:你需要提供输入和输出、map和reduce实现以及输出类型。
    /**
     * 定义一个hadoop job,用于统计不同地域的地震次数
     */
    package com.eq.job;
    
    import org.apache.hadoop.fs.Path;
    import org.apache.hadoop.io.IntWritable;
    import org.apache.hadoop.mapreduce.Job;
    import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
    import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
    
    import com.eq.map.EarthQuakeLocationMapper;
    import com.eq.map.EarthQuakesPerDateMapper;
    import com.eq.reduce.EarthQuakeLocationReducer;
    import com.eq.reduce.EarthQuakesPerDateReducer;
    import org.apache.hadoop.io.Text;
    
    public class EarthQuakesLocationJob {
    
    	/**
    	 * @param args
    	 */
    	
    	public static void main(String[] args) throws Throwable {
    		// TODO Auto-generated method stub
    		Job job = new Job();
    		job.setJarByClass(EarthQuakesLocationJob.class);
    		FileInputFormat.addInputPath(job, new Path("hdfs://localhost:9000/input/earthquake_data.csv"));//csv文件所在目录
    		FileOutputFormat.setOutputPath(job, new Path("hdfs://localhost:9000/output"));
    		
    		job.setMapperClass(EarthQuakeLocationMapper.class);
    		job.setReducerClass(EarthQuakeLocationReducer.class);
    		job.setOutputKeyClass(Text.class);
    		job.setOutputValueClass(IntWritable.class);
    		
    		System.exit(job.waitForCompletion(true)?0:1);
    	}
    
    }
    

    3.4程序运行结果



    reduce输出的结果,可以在 http://localhost:50070中查看。以上只是结果的一部分。

    通过上文的叙述,我们解答了前文提到的两个问题的第二个问题。还有第一个问题,就是统计每个时间地震发生的次数。
    在源代码中,map函数如下:
    /**
     * map函数的实现
     */
    package com.eq.map;
    
    import java.io.IOException;
    import java.text.SimpleDateFormat;
    import java.util.Date;
    
    import org.apache.hadoop.io.IntWritable;
    import org.apache.hadoop.io.LongWritable;
    import org.apache.hadoop.io.Text;
    import org.apache.hadoop.mapreduce.Mapper;
    
    import au.com.bytecode.opencsv.CSVParser;
    
    public class EarthQuakesPerDateMapper extends
    		Mapper<LongWritable, Text, Text, IntWritable> {
    
    	@Override
    	protected void map(LongWritable key, Text value, Context context) throws IOException {
    		if (key.get() > 0) {
    			try {
    				// csv解析器
    				CSVParser parser = new CSVParser();
    				// 解析csv数据
    				String[] lines = parser.parseLine(value.toString());
    				String dtstr = lines[0];
    				//map输出
    				context.write(new Text(dtstr), new IntWritable(1));
    			} catch (Exception e) {
    				// TODO: handle exception
    				e.printStackTrace();
    			}
    		}
    	}
    
    }
    

    reduce函数如下:
    package com.eq.reduce;
    
    import java.io.IOException;
    
    import org.apache.hadoop.io.IntWritable;
    import org.apache.hadoop.io.Text;
    import org.apache.hadoop.mapreduce.Reducer;
    
    public class EarthQuakesPerDateReducer extends
    		Reducer<Text, IntWritable, Text, IntWritable> {
    
    	@Override
    	protected void reduce(Text key, Iterable<IntWritable> values, Context context) throws IOException, InterruptedException {
    		int count = 0;
    		for (IntWritable value : values) {
    			count++;
    		}
    		context.write(key, new IntWritable(count));
    	}
    }
    

    Job如下:
    /**
     * 定义一个hadoop job
     */
    package com.eq.job;
    
    import org.apache.hadoop.fs.Path;
    import org.apache.hadoop.io.IntWritable;
    import org.apache.hadoop.mapreduce.Job;
    import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
    import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
    
    import com.eq.map.EarthQuakesPerDateMapper;
    import com.eq.reduce.EarthQuakesPerDateReducer;
    import org.apache.hadoop.io.Text;
    
    public class EarthQuakesPerDayJob {
    
    	/**
    	 * @param args
    	 */
    	
    	public static void main(String[] args) throws Throwable {
    		// TODO Auto-generated method stub
    		Job job = new Job();
    		job.setJarByClass(EarthQuakesPerDayJob.class);
    		FileInputFormat.addInputPath(job, new Path("hdfs://localhost:9000/input/all_month.csv"));//csv文件所在目录
    		FileOutputFormat.setOutputPath(job, new Path("hdfs://localhost:9000/output"));
    		
    		job.setMapperClass(EarthQuakesPerDateMapper.class);
    		job.setReducerClass(EarthQuakesPerDateReducer.class);
    		job.setOutputKeyClass(Text.class);
    		job.setOutputValueClass(IntWritable.class);
    		
    		System.exit(job.waitForCompletion(true)?0:1);
    	}
    
    }
    
    这几段代码和之前的很相似,此处不再赘述。

  • 相关阅读:
    SpringMVC_HelloWorld_02
    SpringMVC_HelloWorld_01
    设计模式之笔记--解释器模式(Interpreter)
    设计模式之笔记--命令模式(Command)
    设计模式之笔记--职责链模式(Chain of Responsibility)
    设计模式之笔记--代理模式(Proxy)
    设计模式之笔记--享元模式(Flyweight)
    设计模式之笔记--外观模式(Facade)
    闲居即兴
    nacos
  • 原文地址:https://www.cnblogs.com/dyllove98/p/3155536.html
Copyright © 2011-2022 走看看