zoukankan      html  css  js  c++  java
  • 用MODELLER构建好模型后对loop区域进行自动的优化过程

    一:对生成的模型的所有的loop区域进行优化
    # Homology modeling by the automodel class
    from modeller import *
    from modeller.automodel import *    # Load the automodel class
    
    log.verbose()
    env = environ()
    
    # directories for input atom files
    env.io.atom_files_directory = ['.', '../atom_files']
    
    a = loopmodel(env,
                  alnfile  = 'alignment.ali',     # alignment filename
                  knowns   = '5fd1',              # codes of the templates
                  sequence = '1fdx')              # code of the target
    a.starting_model= 1                 # index of the first model
    a.ending_model  = 1                 # index of the last model
                                        # (determines how many models to calculate)
    a.md_level = None                   # No refinement of model
    
    a.loop.starting_model = 1           # First loop model
    a.loop.ending_model   = 4           # Last loop model
    a.loop.md_level       = refine.fast # Loop model refinement level
    
    a.make()                            # do homology modeling
    
     
    a.loop.starting_model 和 a.loop.ending_model用于指定产生优化loop后的模型数量。
     
    二:指定要优化的loop区域
    from modeller import *
    from modeller.automodel import *
    
    log.verbose()
    env = environ()
    
    env.io.atom_files_directory = ['.', '../atom_files']
    
    # Create a new class based on 'loopmodel' so that we can redefine
    # select_loop_atoms
    class MyLoop(loopmodel):
        # This routine picks the residues to be refined by loop modeling
        def select_loop_atoms(self):
            # Two residue ranges (both will be refined simultaneously)
            return selection(self.residue_range('19:', '28:'),
                             self.residue_range('45:', '50:'))
    
    a = MyLoop(env,
               alnfile  = 'alignment.ali',      # alignment filename
               knowns   = '5fd1',               # codes of the templates
               sequence = '1fdx',               # code of the target
               loop_assess_methods=assess.DOPE) # assess each loop with DOPE
    a.starting_model= 1                 # index of the first model
    a.ending_model  = 1                 # index of the last model
    
    a.loop.starting_model = 1           # First loop model
    a.loop.ending_model   = 2           # Last loop model
    
    a.make()                            # do modeling and loop refinement
    
    这个过程需要自己定义一个Myloop类,这个类继承了loopmodel类,这个类要重写loopmodel类中的select_loop_atoms()方法。
  • 相关阅读:
    MFC基于对话框的程序添加菜单
    iOS远程推送原理及实现过程
    基于SolrCloud的内容搜索和热点推送
    Android 常用抓包工具介绍之Charles
    帮你快速实现全景应用性能可视化
    Android常用抓包工具之TcpDump
    JAVA IO 序列化与设计模式
    《2015中国移动应用性能管理白皮书》欢迎来看
    利用听云Server和听云Network实测Kubernetes和Mesos在高并发下的网络性能
    魅族电商运维之路
  • 原文地址:https://www.cnblogs.com/dyllove98/p/3172210.html
Copyright © 2011-2022 走看看