zoukankan      html  css  js  c++  java
  • hdu 1199 Color the Ball(离散化线段树)

    Color the Ball

    Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
    Total Submission(s): 3529    Accepted Submission(s): 874

    Problem Description
    There are infinite balls in a line (numbered 1 2 3 ....), and initially all of them are paint black. Now Jim use a brush paint the balls, every time give two integers a b and follow by a char 'w' or 'b', 'w' denotes the ball from a to b are painted white, 'b' denotes that be painted black. You are ask to find the longest white ball sequence.
     
    Input
    First line is an integer N (<=2000), the times Jim paint, next N line contain a b c, c can be 'w' and 'b'.

    There are multiple cases, process to the end of file.
     
    Output
    Two integers the left end of the longest white ball sequence and the right end of longest white ball sequence (If more than one output the small number one). All the input are less than 2^31-1. If no such sequence exists, output "Oh, my god".
     
    Sample Input
    3 1 4 w 8 11 w 3 5 b
     
    Sample Output
    8 11
     
     
    //好事恶习啊,我都快要吐了,第一次做离散化的线段树
    #include<iostream>
    #include<cstdio>
    #include<cstring>
    #include<algorithm>
    using namespace std;
    #define N 4040
    int a[N],r[N],p[N],c[N],f[N];//r[i]排名i的原位置,p[i]原位置i的排名
    int cmp(int i,int j){
        return a[i]<a[j];
    }
    struct node{
        int l,r,lz;
        void init(int _l,int _r){
            l=_l;r=_r;lz=-1;
        }
    }t[4*N];
    void build(int l,int r,int k){
        if(l>=r)return;
        t[k].init(l,r);
        if(l+1>=r)return;
        int md=(l+r)/2;
        build(l,md,k*2);
        build(md,r,k*2+1);//不是md+1(因为md被覆盖)
    }
    void down(int k){
    	if(t[k].l+1==t[k].r)return;
        if(t[k].lz==-1)return;
        t[k*2].lz=t[k*2+1].lz=t[k].lz;
        t[k].lz=-1;
    }
    void DownAll(int k){
        if(t[k].lz!=-1){
            for(int i=t[k].l;i<t[k].r;i++)f[i]=t[k].lz;//右端点不标记(只有被覆盖时才标记)
            return ;
        }
        DownAll(k*2);
        DownAll(k*2+1);
    }
    void update(int l,int r,int cr,int k){
        if(t[k].l>=t[k].r)return;
        if(l==t[k].l&&r==t[k].r){
            t[k].lz=cr;//标记
            return;
        }
        down(k);
        if(t[k].l+1>=t[k].r)return;
    
        int md=(t[k].l+t[k].r)/2;
        if(md>=r)update(l,r,cr,k*2);
        else if(l>md)update(l,r,cr,k*2+1);
        else{
            update(l,md,cr,k*2);
            update(md,r,cr,k*2+1);
        }
    }
    int main(){
        int i,j,k,n;
        int x,y;
    	char ch;
        while(~scanf("%d",&n)){
            for(i=j=0;i<n;i++){
                scanf("%d%d %c",&x,&y,&ch);
    			c[i]=(ch=='w');
                //l-1 或r+1 [)一闭一开离散化
                r[j]=j;a[j]=x;++j;
                r[j]=j;a[j]=y+1;++j;
            }
            
            sort(r,r+j,cmp);
            //去重
            p[r[0]]=k=0;//第0位的a,排第0位
            for(i=1;i<j;i++){
                if(a[r[i]]!=a[r[i-1]])a[r[++k]]=a[r[i]];
                p[r[i]]=k;
            }
            //for(i=0;i<j;i++)cout<<p[r[i]]<<" ";cout<<endl;
            //初始化树
            build(0,k,1);
            memset(f,0,sizeof(f));//0黑色1白色
            //update
            for(i=0,n+=n;i<n;i+=2){
                x=p[i];
                y=p[i+1];
                update(x,y,c[i/2],1);//区间更新
            }
            DownAll(1);
           // for(i=0;i<=k;i++)cout<<f[i]<<" ";cout<<endl;
            int tx,ty;
            for(i=x=y=0;i<=k;i++){
                if(f[i]==0)continue;
                tx=a[r[i]];
                while(f[i]==1)i++;
                ty=a[r[i]];
                if(ty-tx>y-x){x=tx;y=ty;}
            }
            if(x==y) puts("Oh, my god");
            else printf("%d %d
    ",x, y-1);
    
        }
    return 0;
    }

     
  • 相关阅读:
    luogu P3704 [SDOI2017]数字表格
    「雅礼集训 2018 Day4」Magic(分治NTT)
    「清华集训 2017」小 Y 和恐怖的奴隶主
    [WC2019]数树(树形dp+多项式exp)
    「FJWC2020Day5-zzq」lg (容斥)
    BoundedOptimization TopCoder
    MapGuessing TopCoder
    线性递推(Berlekamp-Massey 算法)
    杜教筛小记
    「余姚中学 2019 联测 Day 6」解码
  • 原文地址:https://www.cnblogs.com/dyllove98/p/3231062.html
Copyright © 2011-2022 走看看