zoukankan      html  css  js  c++  java
  • hdu 1199 Color the Ball(离散化线段树)

    Color the Ball

    Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
    Total Submission(s): 3529    Accepted Submission(s): 874

    Problem Description
    There are infinite balls in a line (numbered 1 2 3 ....), and initially all of them are paint black. Now Jim use a brush paint the balls, every time give two integers a b and follow by a char 'w' or 'b', 'w' denotes the ball from a to b are painted white, 'b' denotes that be painted black. You are ask to find the longest white ball sequence.
     
    Input
    First line is an integer N (<=2000), the times Jim paint, next N line contain a b c, c can be 'w' and 'b'.

    There are multiple cases, process to the end of file.
     
    Output
    Two integers the left end of the longest white ball sequence and the right end of longest white ball sequence (If more than one output the small number one). All the input are less than 2^31-1. If no such sequence exists, output "Oh, my god".
     
    Sample Input
    3 1 4 w 8 11 w 3 5 b
     
    Sample Output
    8 11
     
     
    //好事恶习啊,我都快要吐了,第一次做离散化的线段树
    #include<iostream>
    #include<cstdio>
    #include<cstring>
    #include<algorithm>
    using namespace std;
    #define N 4040
    int a[N],r[N],p[N],c[N],f[N];//r[i]排名i的原位置,p[i]原位置i的排名
    int cmp(int i,int j){
        return a[i]<a[j];
    }
    struct node{
        int l,r,lz;
        void init(int _l,int _r){
            l=_l;r=_r;lz=-1;
        }
    }t[4*N];
    void build(int l,int r,int k){
        if(l>=r)return;
        t[k].init(l,r);
        if(l+1>=r)return;
        int md=(l+r)/2;
        build(l,md,k*2);
        build(md,r,k*2+1);//不是md+1(因为md被覆盖)
    }
    void down(int k){
    	if(t[k].l+1==t[k].r)return;
        if(t[k].lz==-1)return;
        t[k*2].lz=t[k*2+1].lz=t[k].lz;
        t[k].lz=-1;
    }
    void DownAll(int k){
        if(t[k].lz!=-1){
            for(int i=t[k].l;i<t[k].r;i++)f[i]=t[k].lz;//右端点不标记(只有被覆盖时才标记)
            return ;
        }
        DownAll(k*2);
        DownAll(k*2+1);
    }
    void update(int l,int r,int cr,int k){
        if(t[k].l>=t[k].r)return;
        if(l==t[k].l&&r==t[k].r){
            t[k].lz=cr;//标记
            return;
        }
        down(k);
        if(t[k].l+1>=t[k].r)return;
    
        int md=(t[k].l+t[k].r)/2;
        if(md>=r)update(l,r,cr,k*2);
        else if(l>md)update(l,r,cr,k*2+1);
        else{
            update(l,md,cr,k*2);
            update(md,r,cr,k*2+1);
        }
    }
    int main(){
        int i,j,k,n;
        int x,y;
    	char ch;
        while(~scanf("%d",&n)){
            for(i=j=0;i<n;i++){
                scanf("%d%d %c",&x,&y,&ch);
    			c[i]=(ch=='w');
                //l-1 或r+1 [)一闭一开离散化
                r[j]=j;a[j]=x;++j;
                r[j]=j;a[j]=y+1;++j;
            }
            
            sort(r,r+j,cmp);
            //去重
            p[r[0]]=k=0;//第0位的a,排第0位
            for(i=1;i<j;i++){
                if(a[r[i]]!=a[r[i-1]])a[r[++k]]=a[r[i]];
                p[r[i]]=k;
            }
            //for(i=0;i<j;i++)cout<<p[r[i]]<<" ";cout<<endl;
            //初始化树
            build(0,k,1);
            memset(f,0,sizeof(f));//0黑色1白色
            //update
            for(i=0,n+=n;i<n;i+=2){
                x=p[i];
                y=p[i+1];
                update(x,y,c[i/2],1);//区间更新
            }
            DownAll(1);
           // for(i=0;i<=k;i++)cout<<f[i]<<" ";cout<<endl;
            int tx,ty;
            for(i=x=y=0;i<=k;i++){
                if(f[i]==0)continue;
                tx=a[r[i]];
                while(f[i]==1)i++;
                ty=a[r[i]];
                if(ty-tx>y-x){x=tx;y=ty;}
            }
            if(x==y) puts("Oh, my god");
            else printf("%d %d
    ",x, y-1);
    
        }
    return 0;
    }

     
  • 相关阅读:
    51nod 1445 变色DNA ( Bellman-Ford算法求单源最短路径)
    51nod 1307 绳子与重物 (标记父节点更新即可)
    AOJ GRL_1_C: All Pairs Shortest Path (Floyd-Warshall算法求任意两点间的最短路径)(Bellman-Ford算法判断负圈)
    AOJ GRL_1_B: Shortest Path
    AOJ GRL_1_A: Single Source Shortest Path (Dijktra算法求单源最短路径,邻接表)
    【算法】prim算法(最小生成树)(与Dijkstra算法的比较)
    【算法】Dijkstra算法(单源最短路径问题)(路径还原) 邻接矩阵和邻接表实现
    【算法】Bellman-Ford算法(单源最短路径问题)(判断负圈)
    面试之二:Redis是单线程还是多线程?以及处理模型。
    面试之一:CMS收集器整理
  • 原文地址:https://www.cnblogs.com/dyllove98/p/3231062.html
Copyright © 2011-2022 走看看