zoukankan      html  css  js  c++  java
  • <老古董>1962年的线性支持向量机解法

    我们说“训练”支持向量机模型,其实就是确定"最大间隔超平面"。

    用数学语言来说就是确定一个最优的W。好比训练一个逻辑回归模型的目的是确定最优的W和b。

    输入 X,为一个n维向量

    输出 y,为-1或1

    1.”弱鸡版支持向量机“——硬间隔 线性支持向量机(1962)

    我更喜欢叫它 ”弱鸡版支持向量机“,因为它还什么都没有。

    判别函数 f(X)  = sign( W*X + b )。

    我们要根据训练数据集{(X,y)}来计算出最优的参数W和b。

    首先基于训练数据集我们有限制条件:  y(i) * (W*X(i)+b) >=1,对于训练集中所有的(X(i) ,y(i))。

     在此基础上我们找最优的W,也就是使margin = 2 / ||W||    最大。

    总结下来,即求解下面问题,解出最优的W和b。(相比之下,现代神经网络的求解是对于多项式目标函数J(W)求解使J(W)最小的W。只需要使用链式法则和求导计算这两个简单的数学技巧,这应该算是一个明显的进步吧)

    拉格朗日乘子法转换为对偶问题,再KKT条件,

    具体数学解决过程这里不写了,较为繁琐。

    我们在求解过程中引入了一组拉格朗日乘子,a1,a2,a3,a4.....

    推导出:

    (SV是支持向量们的集合)

    解出上式即可。

     可以看出,最初支持向量机就是一个完全的数学模型。

    2.“勃起版支持向量机”————软间隔 线性支持向量机(1962年)

    在前面的硬间隔线性支持向量机上做了一些变化,即给目标函数加了铰链损失项,目标函数变为

                         J(W) = 

    其中[公式]称为惩罚参数,[公式]越小时对误分类惩罚越小,越大时对误分类惩罚越大,当[公式]取正无穷时就变成了硬间隔优化。实际应用时我们要合理选取[公式][公式]越小越容易欠拟合,[公式]越大越容易过拟合。

    (下面用ξ表示铰链函数)

    接下来只要采用同样方法求解下面问题即可。

     

  • 相关阅读:
    LSA
    DBSCAN
    层次聚类
    crontab 不产生邮件
    vue页面添加当前日期,并且格式化
    SQL去重复数据
    Idea防沉迷插件StopCoding的安装使用教程
    动漫
    intellij-idea开启rundashboard配置
    SpringCloud之Eureka注册中心原理及其搭建
  • 原文地址:https://www.cnblogs.com/dynmi/p/12259453.html
Copyright © 2011-2022 走看看