zoukankan      html  css  js  c++  java
  • 766. Toeplitz Matrix

    Problem:

    A matrix is Toeplitz if every diagonal from top-left to bottom-right has the same element.

    Now given an M x N matrix, return True if and only if the matrix is Toeplitz.

    Example 1:

    Input:
    matrix = [
      [1,2,3,4],
      [5,1,2,3],
      [9,5,1,2]
    ]
    Output: True
    Explanation:
    In the above grid, the diagonals are:
    "[9]", "[5, 5]", "[1, 1, 1]", "[2, 2, 2]", "[3, 3]", "[4]".
    In each diagonal all elements are the same, so the answer is True.
    

    Example 2:

    Input:
    matrix = [
      [1,2],
      [2,2]
    ]
    Output: False
    Explanation:
    The diagonal "[1, 2]" has different elements.
    

    Note:

    1. matrix will be a 2D array of integers.
    2. matrix will have a number of rows and columns in range [1, 20].
    3. matrix[i][j] will be integers in range [0, 99].

    Follow up:

    What if the matrix is stored on disk, and the memory is limited such that you can only load at most one row of the matrix into the memory at once?
    What if the matrix is so large that you can only load up a partial row into the memory at once?

    思路

    Solution (C++):

    bool isToeplitzMatrix(vector<vector<int>>& matrix) {
        int m = matrix.size(), n = matrix[0].size();
        for (int i = 1; i < m; ++i) {
            for (int j = 1; j < n; ++j) {
                if (matrix[i][j] != matrix[i-1][j-1])
                    return false;
            }
        }
        return true;
    }
    

    性能

    Runtime: 8 ms  Memory Usage: 7.7 MB

    思路

    Solution (C++):

    
    

    性能

    Runtime: ms  Memory Usage: MB

    相关链接如下:

    知乎:littledy

    欢迎关注个人微信公众号:小邓杂谈,扫描下方二维码即可

    作者:littledy
    本文版权归作者和博客园共有,欢迎转载,但未经作者同意必须保留此段声明,且在文章页面明显位置给出原文链接,否则保留追究法律责任的权利。
  • 相关阅读:
    (中等) HDU 1495 非常可乐,BFS。
    (简单) POJ 1562 Oil Deposits,BFS。
    (简单) POJ 3984 迷宫问题,BFS。
    动态规划(斐波那契系列)---爬楼梯
    回溯---N皇后
    回溯---数独
    回溯---分割字符串使得每个部分都是回文数
    回溯---含有相同元素求子集
    回溯---子集
    回溯---组合求和
  • 原文地址:https://www.cnblogs.com/dysjtu1995/p/12736634.html
Copyright © 2011-2022 走看看