zoukankan      html  css  js  c++  java
  • 13-垃圾邮件分类2

    1.读取

     1 def read_dataset():
     2     file_path = r'SHSSpamCollection'
     3     sms = open(file_path,encoding='utf-8')
     4     sms_data = []
     5     sms_label = []
     6     csv_reader = csv.reader(sms,delimiter='	')
     7     for line in csv_reader:
     8         sms_label.append(line[0])
     9         sms_data.append(preprocessing(line[1]))
    10         sms.close()
    11     return sms_data,sms_label

    2.数据预处理

     1 def preprocess(text):
     2     tokens = [word for sent in nltk.sent_tokenize(text) for word in nltk.word_tokenize(sent)]  # 分词
     3     stops = stopwords.words('english')  # 使用英文的停用词表
     4     tokens = [token for token in tokens if token not in stops]  # 去除停用词
     5     tokens = [token.lower() for token in tokens if len(token) >= 3]  # 大小写,短词
     6     wnl = WordNetLemmatizer()
     7     tag = nltk.pos_tag(tokens)  # 词性
     8     tokens = [wnl.lemmatize(token, pos=get_wordnet_pos(tag[i][1])) for i, token in enumerate(tokens)]  # 词性还原
     9     preprocessed_text = ' '.join(tokens)
    10     return preprocessed_text

    3.数据划分—训练集和测试集数据划分

    from sklearn.model_selection import train_test_split

    x_train,x_test, y_train, y_test = train_test_split(data, target, test_size=0.2, random_state=0, stratify=y_train)

    1 def split_dataset(data, label):
    2     x_train, x_test, y_train, y_test = train_test_split(data, label, test_size=0.2, random_state=0, stratify=label)
    3     return x_train, x_test, y_train, y_tes

    4.文本特征提取

    sklearn.feature_extraction.text.CountVectorizer

    https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.CountVectorizer.html?highlight=sklearn%20feature_extraction%20text%20tfidfvectorizer

    sklearn.feature_extraction.text.TfidfVectorizer

    https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.TfidfVectorizer.html?highlight=sklearn%20feature_extraction%20text%20tfidfvectorizer#sklearn.feature_extraction.text.TfidfVectorizer

    from sklearn.feature_extraction.text import TfidfVectorizer

    tfidf2 = TfidfVectorizer()

    观察邮件与向量的关系

    向量还原为邮件

     1 # 文本转化为tf-idf的特征矩阵
     2 def tfidf_dataset(x_train, x_test):
     3     tfidf = TfidfVectorizer()
     4     X_train = tfidf.fit_transform(x_train)
     5     X_test = tfidf.transform(x_test)
     6     return X_train, X_test, tfidf
     7 
     8 # 向量还原成邮件
     9 def revert_mail(x_train, X_train, model):
    10     s = X_train.toarray()[0]
    11     print("第一封邮件向量表示为:", s)
    12     a = np.flatnonzero(X_train.toarray()[0])  # 非零元素的位置(index)
    13     print("非零元素的位置:", a)
    14     print("向量的非零元素的值:", s[a])
    15     b = model.vocabulary_  # 词汇表
    16     key_list = []
    17     for key, value in b.items():
    18         if value in a:
    19             key_list.append(key)  # key非0元素对应的单词
    20     print("向量非零元素对应单词:", key_list)
    21     print("向量化之前的邮件:", x_train[0])

    4.模型选择

    from sklearn.naive_bayes import GaussianNB

    from sklearn.naive_bayes import MultinomialNB

    说明为什么选择这个模型?

    源码如下:

    1 def mnb_model(x_train, x_test, y_train, y_test):
    2     mnb = MultinomialNB()
    3     mnb.fit(x_train, y_train)
    4     predict = mnb.predict(x_test)
    5     print("总数:", len(y_test))
    6     print("预测正确数:", (predict == y_test).sum())
    7     print("预测准确率:",sum(predict == y_test) / len(y_test))
    8     return predict

      因为它并不符合正态分布的特征,因此要选择多项式分布类型。

    5.模型评价:混淆矩阵,分类报告

    from sklearn.metrics import confusion_matrix

    confusion_matrix = confusion_matrix(y_test, y_predict)

    说明混淆矩阵的含义

    from sklearn.metrics import classification_report

    说明准确率、精确率、召回率、F值分别代表的意义 

    1 def class_report(ypre_mnb, y_test):
    2     conf_matrix = confusion_matrix(y_test, ypre_mnb)
    3     print("=======================================")
    4     print("混淆矩阵:
    ", conf_matrix)
    5     c = classification_report(y_test, ypre_mnb)
    6     print("=======================================")
    7     print("分类报告:
    ", c)
    8     print("模型准确率:", (conf_matrix[0][0] + conf_matrix[1][1]) / np.sum(conf_matrix))

    混淆矩阵 confusion-matrix:

     TP(True Positive:真实为0,预测为0

     TN(True Negative:真实为1,预测为1

     FP(False Positive:真实为1,预测为0 

     FN(False Negative):真实为0,预测为1  

    分类确率所有样本中被预测正确的样本的比率。

    精确率在被所有预测为正的样本中实际为正样本的概率。

    召回率 指在实际为正的样本中被预测为正样本的概率。

    F1值:准确率和召回率的加权调和平均。

    6.比较与总结

    如果用CountVectorizer进行文本特征生成,与TfidfVectorizer相比,效果如何?

    答:CountVectorizer只考虑每种词汇在该训练文本中出现的频率,而TfidfVectorizer除了考量某一词汇在当前训练文本中出现的频率之外,同时关注包含这个词汇的其它训练文本数目的倒数。相比之下,训练文本的数量越多,TfidfVectorizer这种特征量化方式就更有优势

  • 相关阅读:
    C语言I博客作业03
    C语言I博客作业02
    macwingIDE python3.5 配置
    JAVA必会算法插入排序
    java匿名内部类的另一个用途
    JAVA必会算法选择排序
    Mac elasticsearch 5.2.2 单机双节点配置
    JAVA必会算法二分查找法
    AOP 事物连接,记忆连接数据库,连接池
    线程的意义与一些常见面试问题
  • 原文地址:https://www.cnblogs.com/dyun3/p/12976319.html
Copyright © 2011-2022 走看看