zoukankan      html  css  js  c++  java
  • Shorten Diameter

    Shorten Diameter


    Time limit : 2sec / Stack limit : 256MB / Memory limit : 256MB

    Score : 600 points

    Problem Statement

    Given an undirected tree, let the distance between vertices u and v be the number of edges on the simple path from u to v. The diameter of a tree is the maximum among the distances between any two vertices. We will call a tree good if and only if its diameter is at most K.

    You are given an undirected tree with N vertices numbered 1 through N. For each i(1≦iN1), there is an edge connecting vertices Ai and Bi.

    You want to remove zero or more vertices from the tree, so that the resulting tree is good. When a vertex is removed, all incident edges will also be removed. The resulting graph must be connected.

    Find the minimum number of vertices that you need to remove in order to produce a good tree.

    Constraints

    • 2≦N≦2000
    • 1≦KN1
    • 1≦AiN,1≦BiN
    • The graph defined by Ai and Bi is a tree.

    Input

    The input is given from Standard Input in the following format:

    N K
    A1 B1
    A2 B2
    :
    AN1 BN1
    

    Output

    Print the minimum number of vertices that you need to remove in order to produce a good tree.


    Sample Input 1

    6 2
    1 2
    3 2
    4 2
    1 6
    5 6
    

    Sample Output 1

    2
    

    The tree is shown below. Removing vertices 5 and 6 will result in a good tree with the diameter of 2.

    ctree.png

    Sample Input 2

    6 5
    1 2
    3 2
    4 2
    1 6
    5 6
    

    Sample Output 2

    0
    

    Since the given tree is already good, you do not need to remove any vertex.

    分析:虽然没做出来,不过看了陈高远大牛的代码还是可以yy一下的。

    可以先求出任意两点间的距离(dfs),然后考虑最优情况是左右子树平衡的时候(有2种情况),遍历至最优情况即可

    代码:

    #include <iostream>
    #include <cstdio>
    #include <cstdlib>
    #include <cmath>
    #include <algorithm>
    #include <climits>
    #include <cstring>
    #include <string>
    #include <set>
    #include <map>
    #include <queue>
    #include <stack>
    #include <vector>
    #include <list>
    #include <ext/rope>
    #define rep(i,m,n) for(i=m;i<=n;i++)
    #define rsp(it,s) for(set<int>::iterator it=s.begin();it!=s.end();it++)
    #define vi vector<int>
    #define pii pair<int,int>
    #define mod 1000000007
    #define inf 0x3f3f3f3f
    #define pb push_back
    #define mp make_pair
    #define fi first
    #define se second
    #define ll long long
    #define pi acos(-1.0)
    const int maxn=2e3+10;
    const int dis[4][2]={{0,1},{-1,0},{0,-1},{1,0}};
    using namespace std;
    using namespace __gnu_cxx;
    ll gcd(ll p,ll q){return q==0?p:gcd(q,p%q);}
    ll qpow(ll p,ll q){ll f=1;while(q){if(q&1)f=f*p;p=p*p;q>>=1;}return f;}
    int n,m,a[maxn][maxn],mi,cnt;
    vi p[maxn];
    pii q[maxn];
    void dfs(int root,int pre,int now,int s)
    {
        a[root][now]=s;
        for(int x:p[now])
        {
            if(x!=pre)dfs(root,now,x,s+1);
        }
    }
    int main()
    {
        int i,j,k,t;
        mi=inf;
        scanf("%d%d",&n,&k);
        rep(i,1,n-1){
            scanf("%d%d",&j,&t);
            p[j].pb(t),p[t].pb(j);
            q[i].fi=j,q[i].se=t;
        }
        rep(i,1,n)dfs(i,-1,i,0);
        rep(i,1,n)
        {
            cnt=0;
            rep(j,1,n)
                if(2*a[i][j]>k)cnt++;
            mi=min(mi,cnt);
        }
        rep(i,1,n-1)
        {
            cnt=0;
            rep(j,1,n)
                if(2*min(a[j][q[i].fi],a[j][q[i].se])+1>k)
                    cnt++;
            mi=min(mi,cnt);
        }
        printf("%d
    ",mi);
        //system ("pause");
        return 0;
    }
  • 相关阅读:
    bzoj 2142 礼物——扩展lucas模板
    bzoj 4591 [Shoi2015]超能粒子炮·改——组合数前缀和
    bzoj 4403 序列统计——转化成组合数的思路
    bzoj 2982 combination——lucas模板
    bzoj 3505 [Cqoi2014]数三角形——排列组合
    bzoj 3398 [Usaco2009 Feb]Bullcow 牡牛和牝牛——前缀和优化dp / 排列组合
    bzoj 1009 [HNOI2008]GT考试——kmp+矩阵优化dp
    bzoj 2427 [HAOI2010]软件安装
    bzoj 1951 [Sdoi2010]古代猪文 ——数学综合
    bzoj4247挂饰——DP
  • 原文地址:https://www.cnblogs.com/dyzll/p/5678614.html
Copyright © 2011-2022 走看看