Divisible Group Sums
Given a list of N numbers you will be allowed to choose any M of them. So you can choose in NCM ways. You will have to determine how many of these chosen groups have a sum, which is divisible by D.
Input
Input starts with an integer T (≤ 20), denoting the number of test cases.
The first line of each case contains two integers N (0 < N ≤ 200) and Q (0 < Q ≤ 10). Here N indicates how many numbers are there and Q is the total number of queries. Each of the next N lines contains one 32 bit signed integer. The queries will have to be answered based on these N numbers. Each of the next Q lines contains two integers D (0 < D ≤ 20) and M (0 < M ≤ 10).
Output
For each case, print the case number in a line. Then for each query, print the number of desired groups in a single line.
Sample Input
2
10 2
1
2
3
4
5
6
7
8
9
10
5 1
5 2
5 1
2
3
4
5
6
6 2
Sample Output
Case 1:
2
9
Case 2:
1
分析:dp[i][j][k][t]表示前i个选了j个%k=t的方案数,转移一下即可;
本质是一个01背包;
代码:
#include <iostream> #include <cstdio> #include <cstdlib> #include <cmath> #include <algorithm> #include <climits> #include <cstring> #include <string> #include <set> #include <bitset> #include <map> #include <queue> #include <stack> #include <vector> #define rep(i,m,n) for(i=m;i<=n;i++) #define mod 1000000007 #define inf 0x3f3f3f3f #define vi vector<int> #define pb push_back #define mp make_pair #define fi first #define se second #define ll long long #define pi acos(-1.0) #define pii pair<int,int> #define sys system("pause") const int maxn=1e5+10; const int N=2e2+10; using namespace std; ll gcd(ll p,ll q){return q==0?p:gcd(q,p%q);} ll qpow(ll p,ll q){ll f=1;while(q){if(q&1)f=f*p;p=p*p;q>>=1;}return f;} int n,m,k,t,a[N],cas; ll dp[N][11][21][20]; int main() { int i,j; scanf("%d",&t); while(t--) { int q; memset(dp,0,sizeof(dp)); rep(i,1,20)dp[0][0][i][0]=1; scanf("%d%d",&n,&q); rep(i,1,n)scanf("%d",&a[i]); rep(i,1,n)rep(j,0,min(i,10))rep(k,1,20)rep(m,0,k-1) { dp[i][j][k][m]+=dp[i-1][j][k][m]; if(j)dp[i][j][k][m]+=dp[i-1][j-1][k][((m-a[i])%k+k)%k]; } printf("Case %d: ",++cas); while(q--) { int b,c; scanf("%d%d",&b,&c); printf("%lld ",dp[n][c][b][0]); } } return 0; }