zoukankan      html  css  js  c++  java
  • Jzzhu and Numbers

    Jzzhu and Numbers
    time limit per test
    2 seconds
    memory limit per test
    256 megabytes
    input
    standard input
    output
    standard output

    Jzzhu have n non-negative integers a1, a2, ..., an. We will call a sequence of indexes i1, i2, ..., ik (1 ≤ i1 < i2 < ... < ik ≤ n) a group of size k.

    Jzzhu wonders, how many groups exists such that ai1 & ai2 & ... & aik = 0 (1 ≤ k ≤ n)? Help him and print this number modulo1000000007 (109 + 7). Operation x & y denotes bitwise AND operation of two numbers.

    Input

    The first line contains a single integer n (1 ≤ n ≤ 106). The second line contains n integers a1, a2, ..., an (0 ≤ ai ≤ 106).

    Output

    Output a single integer representing the number of required groups modulo 1000000007 (109 + 7).

    Examples
    input
    3
    2 3 3
    output
    0
    input
    4
    0 1 2 3
    output
    10
    input
    6
    5 2 0 5 2 1
    output
    53
    分析:暴力肯定不行了,考虑容斥;
       答案为ans=Σ(-1)f(x)*pow(2,num[x]),f(x)代表x中二进制1的个数,num[x]代表a[k]&x=x的个数;
       求num[x]=Σcnt[k](a[k]&x=x),即为高维前缀和,与spoj tle类似;
    代码:
    #include <iostream>
    #include <cstdio>
    #include <cstdlib>
    #include <cmath>
    #include <algorithm>
    #include <climits>
    #include <cstring>
    #include <string>
    #include <set>
    #include <bitset>
    #include <map>
    #include <queue>
    #include <stack>
    #include <vector>
    #define rep(i,m,n) for(i=m;i<=n;i++)
    #define mod 1000000007
    #define inf 0x3f3f3f3f
    #define vi vector<int>
    #define pb push_back
    #define mp make_pair
    #define fi first
    #define se second
    #define ll long long
    #define pi acos(-1.0)
    #define pii pair<int,int>
    #define sys system("pause")
    const int maxn=1e6+10;
    const int N=2e2+10;
    using namespace std;
    ll gcd(ll p,ll q){return q==0?p:gcd(q,p%q);}
    ll qpow(ll p,ll q){ll f=1;while(q){if(q&1)f=f*p;p=p*p;q>>=1;}return f;}
    int n,m,k,t,num[1<<20];
    ll dp[1<<20],p[maxn];
    int main()
    {
        int i,j;
        p[0]=1;
        rep(i,1,maxn-10)p[i]=p[i-1]*2%mod;
        scanf("%d",&n);
        rep(i,1,n)scanf("%d",&j),dp[j]++;
        rep(i,0,19)
        {
            rep(j,0,(1<<20)-1)
            {
                if((~j)&(1<<i))(dp[j]+=dp[j^(1<<i)])%=mod;
                if(j&(1<<i))num[j]++;
            }
        }
        ll ret=0;
        rep(i,0,(1<<20)-1)
        {
            if(num[i]&1)ret=(ret-p[dp[i]]+mod)%mod;
            else ret=(ret+p[dp[i]])%mod;
        }
        printf("%lld
    ",ret);
        return 0;
    }
  • 相关阅读:
    centos 7 快速安装 nload 流量工具
    centos 快速安装 fish
    OpenMetadata 开放标准的元数据服务
    xxljob 学习
    easy-rules facts 添加扩展数据
    easy-rules-centraldogma-spring-boot-starter 引入外部rule
    cube.js 基于queryRewrite 进行安全控制
    spring prototype bean 获取处理
    基于cloudevents+easy-rules+centraldogma 进行基于规则的业务开发
    mercurius 基于fastify 的graphql server 以及gateway 服务
  • 原文地址:https://www.cnblogs.com/dyzll/p/6536551.html
Copyright © 2011-2022 走看看