zoukankan      html  css  js  c++  java
  • F

    F - Many Moves


    Time limit : 2sec / Memory limit : 256MB

    Score : 900 points

    Problem Statement

    There are N squares in a row. The squares are numbered 1,2,…,N from left to right.

    You have two pieces, initially placed on square A and B, respectively. You will be asked to process Q queries of the following kind, in the order received:

    • Given an integer xi, move one of the two pieces of your choice to square xi.

    Here, it takes you one second to move a piece one square. That is, the time it takes to move a piece from square X to Y is |XY| seconds.

    Your objective is to process all the queries in the shortest possible time.

    You may only move the pieces in response to queries, and you may not move both pieces at the same time. Also, it is not allowed to rearrange the order in which queries are given. It is, however, allowed to have both pieces in the same square at the same time.

    Constraints

    • 1≤N,Q≤200,000
    • 1≤A,BN
    • 1≤xiN

    Input

    Input is given from Standard Input in the following format:

    N Q A B
    x1 x2 ... xQ
    

    Output

    Let the shortest possible time to process all the queries be X seconds. Print X.


    Sample Input 1

    8 3 1 8
    3 5 1
    

    Sample Output 1

    7
    

    All the queries can be processed in seven seconds, by:

    • moving the piece at square 1 to 3
    • moving the piece at square 8 to 5
    • moving the piece at square 3 to 1

    Sample Input 2

    9 2 1 9
    5 1
    

    Sample Output 2

    4
    

    The piece at square 9 should be moved first.


    Sample Input 3

    9 2 1 9
    5 9
    

    Sample Output 3

    4
    

    The piece at square 1 should be moved first.


    Sample Input 4

    11 16 8 1
    1 1 5 1 11 4 5 2 5 3 3 3 5 5 6 7
    

    Sample Output 4

    21
    分析:考虑dp[i][j]表示当前在x[i],j位置;
       设之前一步在a,b,当前到c,d,且a,c为上次和这次到达点;
       那么有a->c或b->c;
       若a->c,则dp[i][j]直接加上abs(x[i]-x[i-1]);
       若b->c,则dp[i][a]取min{dp[i-1][j]+abs(j-x[i])};
       而这两个都可以用线段树维护;
    代码:
    #include <iostream>
    #include <cstdio>
    #include <cstdlib>
    #include <cmath>
    #include <algorithm>
    #include <climits>
    #include <cstring>
    #include <string>
    #include <set>
    #include <bitset>
    #include <map>
    #include <queue>
    #include <stack>
    #include <vector>
    #include <cassert>
    #include <ctime>
    #define rep(i,m,n) for(i=m;i<=n;i++)
    #define mod 1000000009
    #define inf 0x3f3f3f3f
    #define vi vector<int>
    #define pb push_back
    #define mp make_pair
    #define fi first
    #define se second
    #define ll long long
    #define pi acos(-1.0)
    #define pii pair<int,int>
    #define sys system("pause")
    #define ls rt<<1
    #define rs rt<<1|1
    const int maxn=2e5+10;
    const int N=2e5+10;
    using namespace std;
    int id(int l,int r){return l+r|l!=r;}
    ll gcd(ll p,ll q){return q==0?p:gcd(q,p%q);}
    ll qpow(ll p,ll q){ll f=1;while(q){if(q&1)f=f*p%mod;p=p*p%mod;q>>=1;}return f;}
    int n,m,k,t,q,a,b;
    ll tag[maxn<<2],mi[maxn<<2],mi1[maxn<<2],mi2[maxn<<2];
    void pup(int rt)
    {
        mi[rt]=min(mi[ls],mi[rs]);
        mi1[rt]=min(mi1[ls],mi1[rs]);
        mi2[rt]=min(mi2[ls],mi2[rs]);
        tag[rt]=0;
    }
    void pdw(int rt)
    {
        mi[ls]+=tag[rt];
        mi1[ls]+=tag[rt];
        mi2[ls]+=tag[rt];
        tag[ls]+=tag[rt];
        mi[rs]+=tag[rt];
        mi1[rs]+=tag[rt];
        mi2[rs]+=tag[rt];
        tag[rs]+=tag[rt];
        tag[rt]=0;
    }
    void build(int l,int r,int rt)
    {
        if(l==r)
        {
            mi[rt]=mi1[rt]=mi2[rt]=1e18;
            tag[rt]=0;
            return;
        }
        int mid=l+r>>1;
        build(l,mid,ls);
        build(mid+1,r,rs);
        pup(rt);
    }
    void add(int L,int R,ll v,int l,int r,int rt)
    {
        if(L==l&&R==r)
        {
            mi[rt]+=v;
            mi1[rt]+=v;
            mi2[rt]+=v;
            tag[rt]+=v;
            return;
        }
        int mid=l+r>>1;
        if(tag[rt])pdw(rt);
        if(R<=mid)add(L,R,v,l,mid,ls);
        else if(L>mid)add(L,R,v,mid+1,r,rs);
        else
        {
            add(L,mid,v,l,mid,ls);
            add(mid+1,R,v,mid+1,r,rs);
        }
        pup(rt);
    }
    void upd(int pos,ll v,int l,int r,int rt)
    {
        if(l==pos&&pos==r)
        {
            if(mi[rt]>v)
            {
                mi[rt]=v;
                mi1[rt]=v-pos;
                mi2[rt]=v+pos;
            }
            return;
        }
        int mid=l+r>>1;
        if(tag[rt])pdw(rt);
        if(pos<=mid)upd(pos,v,l,mid,ls);
        else upd(pos,v,mid+1,r,rs);
        pup(rt);
    }
    ll gao(int L,int R,int l,int r,int rt,ll *mi)
    {
        if(L==l&&R==r)return mi[rt];
        int mid=l+r>>1;
        if(tag[rt])pdw(rt);
        if(R<=mid)return gao(L,R,l,mid,ls,mi);
        else if(L>mid)return gao(L,R,mid+1,r,rs,mi);
        else return min(gao(L,mid,l,mid,ls,mi),gao(mid+1,R,mid+1,r,rs,mi));
    }
    int main()
    {
        int i,j;
        scanf("%d%d%d%d",&n,&q,&a,&b);
        build(1,n,1);
        upd(b,0,1,n,1);
        int pre=a;
        rep(i,1,q)
        {
            int x;
            scanf("%d",&x);
            ll cost1=gao(1,x,1,n,1,mi1)+x;
            ll cost2=gao(x,n,1,n,1,mi2)-x;
            ll now=min(cost1,cost2);
            add(1,n,abs(x-pre),1,n,1);
            upd(pre,now,1,n,1);
            pre=x;
        }
        printf("%lld
    ",gao(1,n,1,n,1,mi));
        return 0;
    }
  • 相关阅读:
    [Unity热更新]LuaFramework08.修改加载方式
    [Unity热更新]LuaFramework07.lua逻辑
    [Unity热更新]LuaFramework06.更新资源
    [Unity热更新]LuaFramework05.MonoBehaviour(lua版本)
    [Unity热更新]LuaFramework04.UI界面
    [Unity热更新]05.AssetBundleBrowser
    大数据学习day10-----zookeeper--------1.小文件合并,2 输入和输出 3 多路径输出 4.zookeeper(选举机制,安装,zk的shell客户端、java客户端)
    大数据学习day09----hadoop--day06-------1.MR程序在yarn上运行的基本流程 2. 数据倾斜解决方案 3.高效topN(指定分区器,分组规则,自定义排序规则)
    大数据学习-----day08-----hadoop05-------0.补充(查询源代码的操作)1.MR程序数据处理全流程 2.yarn 3. merger案例(小文件合并)4.数据倾斜 5join案例
    大数据学习day7------hadoop04----1 流量案例 2 电影案例(统计每部电影的均分,统计每个人的均分,统计电影的评论次数,***统计每部电影评分最高的N条记录(Integer.max),统计评论次数最多的n部电影(全局排序)) 3 line线段重叠次数案例 4.索引案例
  • 原文地址:https://www.cnblogs.com/dyzll/p/6804220.html
Copyright © 2011-2022 走看看