zoukankan      html  css  js  c++  java
  • EXTENDED LIGHTS OUT

    EXTENDED LIGHTS OUT
    Time Limit: 1000MS   Memory Limit: 10000K
         

    Description

    In an extended version of the game Lights Out, is a puzzle with 5 rows of 6 buttons each (the actual puzzle has 5 rows of 5 buttons each). Each button has a light. When a button is pressed, that button and each of its (up to four) neighbors above, below, right and left, has the state of its light reversed. (If on, the light is turned off; if off, the light is turned on.) Buttons in the corners change the state of 3 buttons; buttons on an edge change the state of 4 buttons and other buttons change the state of 5. For example, if the buttons marked X on the left below were to be pressed,the display would change to the image on the right. 

    The aim of the game is, starting from any initial set of lights on in the display, to press buttons to get the display to a state where all lights are off. When adjacent buttons are pressed, the action of one button can undo the effect of another. For instance, in the display below, pressing buttons marked X in the left display results in the right display.Note that the buttons in row 2 column 3 and row 2 column 5 both change the state of the button in row 2 column 4,so that, in the end, its state is unchanged. 

    Note: 
    1. It does not matter what order the buttons are pressed. 
    2. If a button is pressed a second time, it exactly cancels the effect of the first press, so no button ever need be pressed more than once. 
    3. As illustrated in the second diagram, all the lights in the first row may be turned off, by pressing the corresponding buttons in the second row. By repeating this process in each row, all the lights in the first 
    four rows may be turned out. Similarly, by pressing buttons in columns 2, 3 ?, all lights in the first 5 columns may be turned off. 
    Write a program to solve the puzzle.

    Input

    The first line of the input is a positive integer n which is the number of puzzles that follow. Each puzzle will be five lines, each of which has six 0 or 1 separated by one or more spaces. A 0 indicates that the light is off, while a 1 indicates that the light is on initially.

    Output

    For each puzzle, the output consists of a line with the string: "PUZZLE #m", where m is the index of the puzzle in the input file. Following that line, is a puzzle-like display (in the same format as the input) . In this case, 1's indicate buttons that must be pressed to solve the puzzle, while 0 indicate buttons, which are not pressed. There should be exactly one space between each 0 or 1 in the output puzzle-like display.

    Sample Input

    2
    0 1 1 0 1 0
    1 0 0 1 1 1
    0 0 1 0 0 1
    1 0 0 1 0 1
    0 1 1 1 0 0
    0 0 1 0 1 0
    1 0 1 0 1 1
    0 0 1 0 1 1
    1 0 1 1 0 0
    0 1 0 1 0 0

    Sample Output

    PUZZLE #1
    1 0 1 0 0 1
    1 1 0 1 0 1
    0 0 1 0 1 1
    1 0 0 1 0 0
    0 1 0 0 0 0
    PUZZLE #2
    1 0 0 1 1 1
    1 1 0 0 0 0
    0 0 0 1 0 0
    1 1 0 1 0 1
    1 0 1 1 0 1
    分析:30点作为未知数,30个点可以列出30个方程组,高斯消元解出答案;
    代码:
    #include <iostream>
    #include <cstdio>
    #include <cstdlib>
    #include <cmath>
    #include <algorithm>
    #include <climits>
    #include <cstring>
    #include <string>
    #include <set>
    #include <bitset>
    #include <map>
    #include <queue>
    #include <stack>
    #include <vector>
    #include <cassert>
    #include <ctime>
    #define rep(i,m,n) for(i=m;i<=(int)n;i++)
    #define mod 1000000007
    #define inf 0x3f3f3f3f
    #define vi vector<int>
    #define pb push_back
    #define mp make_pair
    #define fi first
    #define se second
    #define ll long long
    #define pi acos(-1.0)
    #define pii pair<int,int>
    #define sys system("pause")
    #define ls rt<<1
    #define rs rt<<1|1
    #define all(x) x.begin(),x.end()
    const int maxn=1e2+10;
    const int N=5e2+10;
    using namespace std;
    ll gcd(ll p,ll q){return q==0?p:gcd(q,p%q);}
    ll qmul(ll p,ll q,ll mo){ll f=0;while(q){if(q&1)f=(f+p)%mo;p=(p+p)%mo;q>>=1;}return f;}
    ll qpow(ll p,ll q,ll mo){ll f=1;while(q){if(q&1)f=qmul(f,p,mo)%mo;p=qmul(p,p,mo)%mo;q>>=1;}return f;}
    int n,m,k,t,cas;
    int lcm(int x,int y){return x/__gcd(x,y)*y;}
    int a[maxn][maxn];
    int x[maxn];
    bool free_x[maxn];
    int free_num;
    int Gauss(int equ,int var)
    {
        int i, j, k;
        int max_r;
        int col;
        int ta, tb;
        int LCM;
        int temp;
        int free_x_num;
        int free_index;
        for (col=0,k = 0; k < equ && col < var; k++, col++)
        {
            max_r = k;
            for (i = k + 1; i < equ; i++)
            {
                if (abs(a[i][col]) > abs(a[max_r][col])) max_r = i;
            }
            if (max_r != k)
            {
                for (j = k; j < var + 1; j++) swap(a[k][j], a[max_r][j]);
            }
            if (a[k][col] == 0)
            {
                k--; continue;
            }
            for (i = k + 1; i < equ; i++)
            {
                if (a[i][col] != 0)
                {
                    for (j = col; j < var + 1; j++)
                    {
                        a[i][j] ^= a[k][j];
                    }
                }
            }
        }
        for (i = var - 1; i >= 0; i--)
        {
            temp = a[i][var];
            for (j = i + 1; j < var; j++)
            {
                if (a[i][j] != 0) temp ^= x[j];
            }
            x[i] = temp ;
        }
        return 0;
    }
    void init()
    {
        for(int i=0;i<=4;i++)
        {
            for(int j=0;j<=5;j++)
            {
                for(int k=0;k<=4;k++)
                {
                    for(int w=0;w<=5;w++)
                    {
                        a[i*6+j][k*6+w]=(abs(i-k)+abs(j-w)<=1);
                    }
                }
            }
        }
    }
    int main()
    {
        int i,j;
        scanf("%d",&t);
        while(t--)
        {
            rep(i,0,4)rep(j,0,5)scanf("%d",&a[i*6+j][30]);
            init();
            printf("PUZZLE #%d
    ",++cas);
            Gauss(30,30);
            rep(i,0,4)
            {
                rep(j,0,5)
                {
                    printf("%d%c",x[i*6+j],j==5?'
    ':' ');
                }
            }
        }
        return 0;
    }
  • 相关阅读:
    P4936 题解
    初赛
    洛谷P2763题解
    探秘最小生成树&&洛谷P2126题解
    洛谷P2630 题解
    洛谷P2125 题解
    洛谷P1510 题解
    洛谷P3572题解
    Codeforces 448C Painting Fence(分治法)
    Codeforces 999F Cards and Joy(二维DP)
  • 原文地址:https://www.cnblogs.com/dyzll/p/7226526.html
Copyright © 2011-2022 走看看