zoukankan      html  css  js  c++  java
  • HDU 2861 四维dp打表

    Patti and Terri run a bar in which there are 15 stools. One day, Darrell entered the bar and found that the situation how customers chose the stools were as follows:
    OOEOOOOEEEOOOEO
    O means that the stool in a certain position is used, while E means that the stool in a certain position is empty (here what we care is not who sits on the stool, but whether the stool is empty).As the example we show above, we can say the situation how the 15 stools is used determines 7 intervals (as following):
    OO E OOOO EEE OOO E O
    Now we postulate that there are N stools and M customers, which make up K intervals. How many arrangements do you think will satisfy the condition?
     
    Input
    There are multi test cases and for each test case:
    Each case contains three integers N (0<N<=200), M (M<=N), K (K<=20).
     
    Output
    For each test case print the number of arrangements as described above. (All answers is fit in 64-bit.)
     
    Sample Input
    3 1 3 4 2 4
     
    Sample Output
    1 2
     
     
     
    n个位置坐了m个人分成了k块,求所有可能的种数;
    关键是dp表达式
    i 0-200
    j 0-200
    k 1-20

    dp[i+1][j][k][0]=dp[i][j][k][0]+dp[i][j][k-1][1];

    dp[i+1][j][k][1]=dp[i][j-1][k-1][0]+dp[i][j-1][k][1];

    打表然后查询输出

    #include<iostream>
    #include<cstdio>
    using namespace std;
    long long dp[202][202][22][2];
    int main()
    {
        int n=200,m=200,ak=20,i,j,k;
        dp[0][0][0][1]=1;
        dp[0][0][0][0]=1;
        for(i=0;i<=n;i++)
        {
            for(j=0;j<=m;j++)
            {
                for(k=1;k<=ak;k++)
                {
                    dp[i+1][j][k][0]=dp[i][j][k][0]+dp[i][j][k-1][1];
                    if(j!=0)
                    dp[i+1][j][k][1]=dp[i][j-1][k-1][0]+dp[i][j-1][k][1];
                }
            }
        }
        while(scanf("%d%d%d",&n,&m,&ak)!=EOF)
        {
            cout<<dp[n][m][ak][0]+dp[n][m][ak][1]<<endl;
        }
        return 0;
    }
    View Code
  • 相关阅读:
    dubbo总结
    搞懂分布式技术28:微服务(Microservice)那点事
    搞懂分布式技术21:浅谈分布式消息技术 Kafka
    搞懂分布式技术20:消息队列因何而生
    搞懂分布式技术19:使用RocketMQ事务消息解决分布式事务
    搞懂分布式技术17,18:分布式事务总结
    热敏电阻
    eagle学习汇总
    CSS浮动通俗讲解
    总结一下CSS定位
  • 原文地址:https://www.cnblogs.com/dzzy/p/5216106.html
Copyright © 2011-2022 走看看