回顾:
hive 优点 1. 类sql语句靠近关系型数据库,可自定义函数,增加了扩展性,易于开发,减少mapreduce学习成本 2. hive转换sql语句为mapreduce程序以mapreduce为底层实现 3. hive基于hadoop的hdfs,在hdfs上存储,因为hdfs的扩展性,hive的存储扩展性相应增加
hive 安装部署
1. 解压安装包 2. 进入conf目录,拷贝(备份)相应配置文件,修改 hive-env.sh --> HADOOP_HOME=/opt/cdh-5.6.3/hadoop-2.5.0-cdh5.3.6 --> export HIVE_CONF_DIR=/opt/cdh-5.6.3/hive-0.13.1-cdh5.3.6/conf hive-log4j.properties --> 在hive根目录下创建日志文件夹,来存放hive运行日志 --> hive.log.threshold=ALL hive.root.logger=INFO,DRFA hive.log.dir=/opt/cdh-5.6.3/hive-0.13.1-cdh5.3.6/logs hive.log.file=hive.log hive-site.xml --> javax.jdo.option.ConnectionURL --- jdbc:mysql://hadoop09-linux-01.ibeifeng.com:3306/chd_metastore?createDatabaseIfNotExist=true --> javax.jdo.option.ConnectionDriverName --- com.mysql.jdbc.Driver --> javax.jdo.option.ConnectionUserName --- root --> javax.jdo.option.ConnectionPassword --- root --> hive.cli.print.header --- true # 这行表示是否显示标的列名(可不配) --> hive.cli.print.current.db --- true # 这行表示是否显示当前数据库名(可不配) --> hive.fetch.task.conversion --- true # 这行表示运行sql语句是否走mr(可不配)
Hive 架构
1. metastore --> 在derby数据库存储,在hive目录中会生成derby文件和metastore_db,弊端同级目录下启动hive会报错 --> 在mysql中存储元数据 --> 在远程mysql存储元数据 2. client --> cli/jdbc/Driver/SQLParser/QueryOptimizer/Physical Plan/Execution
Hive 创建表几种方式,分别是什么
1. 普通建表 create table if not exists tablename(...) row format delimited fields terminated by ' '; stored as textfile; 2. 子查询方式 create table if not exists tablename as select * from tablename2; 3. like 方式 create table if not exists tablename like tablename2 # 该创建方式仅复制tablename2的表结构
表的类型
1. 管理表(默认表类型) 2. 外部表(external;解决多用户使用同一表) 3. 分区表(partiion;优化分析查询表数据) --> 查看分区表: show partitions tablename; # 查看tablename的分区情况 手动添加分区 1. 创建分区 hive (workdb)> dfs -mkdir /user/hive/warehouse/workdb.db/emp_part/date=20161029 dfs -put /home/liuwl/opt/datas/emp.txt /user/hive/warehouse/workdb.db/emp_part/date=20161029 --- 发现使用show partitions emp_parts; 不能检索出刚刚手动添加的表分区 2. 解决:alter tabel emp_part add partition (date='20161029')
分析函数和窗口函数(重点)
1. 分析函数 部门20的所有员工,按薪资降序排列 select * from emp where emp.deptno='20' order by sal desc; 所有部门分组,按薪资降序排列 select empno,ename,deptno,sal,max(sal) over (partition by deptno order by sal desc) as maxsal from emp; 结果: empno ename deptno sal maxsal 7839 KING 10 5000.0 5000.0 7782 CLARK 10 2450.0 5000.0 7934 MILLER 10 1300.0 5000.0 7788 SCOTT 20 3000.0 3000.0 7902 FORD 20 3000.0 3000.0 7566 JONES 20 2975.0 3000.0 7876 ADAMS 20 1100.0 3000.0 7369 SMITH 20 800.0 3000.0 7698 BLAKE 30 2850.0 2850.0 7499 ALLEN 30 1600.0 2850.0 7844 TURNER 30 1500.0 2850.0 7654 MARTIN 30 1250.0 2850.0 7521 WARD 30 1250.0 2850.0 7900 JAMES 30 950.0 2850.0 实现行号 select empno,ename,deptno,sal,row_number() over (partition by deptno order by sal desc) as rownum from emp; empno ename deptno sal rownum 7839 KING 10 5000.0 1 7782 CLARK 10 2450.0 2 7934 MILLER 10 1300.0 3 7788 SCOTT 20 3000.0 1 7902 FORD 20 3000.0 2 7566 JONES 20 2975.0 3 7876 ADAMS 20 1100.0 4 7369 SMITH 20 800.0 5 7698 BLAKE 30 2850.0 1 7499 ALLEN 30 1600.0 2 7844 TURNER 30 1500.0 3 7654 MARTIN 30 1250.0 4 7521 WARD 30 1250.0 5 7900 JAMES 30 950.0 6 ROW_NUMBER() 行号 获取工资最高的前两位 select * from (select empno,ename,deptno,sal,row_number() over (partition by deptno order by sal desc) as rownum from emp) t where t.rownum < 3; t.empno t.ename t.deptno t.sal t.rownum 7839 KING 10 5000.0 1 7782 CLARK 10 2450.0 2 7788 SCOTT 20 3000.0 1 7902 FORD 20 3000.0 2 7698 BLAKE 30 2850.0 1 7499 ALLEN 30 1600.0 2 RANK()排名(第一二位为1,第三位为3,默认第二位为1) DENSE_RANK()(第一二位为1,第三位为2,默认第二位为1) 为所有部门分组,按薪资降序排列,且进行排名 select empno,ename,deptno,sal,rank() over (partition by deptno order by sal desc) ranksal from emp; empno ename deptno sal ranksal 7839 KING 10 5000.0 1 7782 CLARK 10 2450.0 2 7934 MILLER 10 1300.0 3 7788 SCOTT 20 3000.0 1 7902 FORD 20 3000.0 1 7566 JONES 20 2975.0 3 7876 ADAMS 20 1100.0 4 7369 SMITH 20 800.0 5 7698 BLAKE 30 2850.0 1 7499 ALLEN 30 1600.0 2 7844 TURNER 30 1500.0 3 7654 MARTIN 30 1250.0 4 7521 WARD 30 1250.0 4 7900 JAMES 30 950.0 6 select empno,ename,deptno,sal,dense_rank() over (partition by deptno order by sal desc) ranksal from emp; empno ename deptno sal dense_ranksal 7839 KING 10 5000.0 1 7782 CLARK 10 2450.0 2 7934 MILLER 10 1300.0 3 7788 SCOTT 20 3000.0 1 7902 FORD 20 3000.0 1 7566 JONES 20 2975.0 2 7876 ADAMS 20 1100.0 3 7369 SMITH 20 800.0 4 7698 BLAKE 30 2850.0 1 7499 ALLEN 30 1600.0 2 7844 TURNER 30 1500.0 3 7654 MARTIN 30 1250.0 4 7521 WARD 30 1250.0 4 7900 JAMES 30 950.0 5 NTILE()层次查询 例:查询出所有组中工资水平前1/3人员 select empno,ename,sal,ntile(3) over (order by sal desc ) ntile from emp group by empno,ename; empno ename sal til 7839 KING 5000.0 1 7902 FORD 3000.0 1 7788 SCOTT 3000.0 1 7566 JONES 2975.0 1 7698 BLAKE 2850.0 1 7782 CLARK 2450.0 2 7499 ALLEN 1600.0 2 7844 TURNER 1500.0 2 7934 MILLER 1300.0 2 7654 MARTIN 1250.0 2 7521 WARD 1250.0 3 7876 ADAMS 1100.0 3 7900 JAMES 950.0 3 7369 SMITH 800.0 3 2. 窗口函数LAG(向前取值)LEAG(向后取值) select empno,ename,sal,lag(ename,4,0) over (order by sal desc) lagvalue from emp; 结果: empno ename sal lagvalue 7839 KING 5000.0 0 7902 FORD 3000.0 0 7788 SCOTT 3000.0 0 7566 JONES 2975.0 0 7698 BLAKE 2850.0 KING 7782 CLARK 2450.0 FORD 7499 ALLEN 1600.0 SCOTT 7844 TURNER 1500.0 JONES 7934 MILLER 1300.0 BLAKE 7654 MARTIN 1250.0 CLARK 7521 WARD 1250.0 ALLEN 7876 ADAMS 1100.0 TURNER 7900 JAMES 950.0 MILLER 7369 SMITH 800.0 MARTIN select empno,ename,sal,lead(ename,4,0) over (order by sal desc) leadvalue from emp; 结果: empno ename sal leadvalue 7839 KING 5000.0 BLAKE 7902 FORD 3000.0 CLARK 7788 SCOTT 3000.0 ALLEN 7566 JONES 2975.0 TURNER 7698 BLAKE 2850.0 MILLER 7782 CLARK 2450.0 MARTIN 7499 ALLEN 1600.0 WARD 7844 TURNER 1500.0 ADAMS 7934 MILLER 1300.0 JAMES 7654 MARTIN 1250.0 SMITH 7521 WARD 1250.0 0 7876 ADAMS 1100.0 0 7900 JAMES 950.0 0 7369 SMITH 800.0 0
Hive中的case when then
1. case key when value1 then '' when value2 then '' else '' end 2. case when key='value1' then '' when key='value2' then '' else '' end 例: select empno,ename,sal,deptno, case when deptno=10 then 'U deptno is 10' when deptno=20 then 'U deptno is 20' else 'U deptno is 30' end from emp; Hive中类型转换(cast(key as type)) Hive中记录时间的格式(unix_timestamp())
数据导入Hive(重点)
1. 从本地导入 load data local inpath 'filepath' into table tbname; 2. 从hdfs导入 load data inpath 'hdfs_filepath' into table tbname; 3. load覆盖 load data local inpath 'filepath' overwrite into table tbname; load data inpath 'hdfs_filepath' overwrite into table tbname; 4. 子查询方式 create table tb2 as select * from tb1; # 默认分隔符为^A 5. insert into table select ql; # 分隔符为emp定义的分隔符 --> create table emp_insert like emp; --> insert into table emp_insert select * from emp; 6. location方式 create table if not exists tbname location 'localPath';
Hive 数据导出(重点)
1. insert方式(注意使用该方式导出数据到本地,1:文件夹得有相应权限;2:最好建一个文件夹,否则原文件夹下所有内容被覆盖) --> insert overwrite [local] directory 'path' select ql ; 例:insert overwrite local directory '/tmp' row format delimited fields terminated by ' ' select * from emp; 2. bin/hdfs -get 3. Linux命令执行HQL: -> -e -> -f -> 输出重定向 4. sqoop:用户hdfs与关系型数据库之间的导入导出
Hive export与import(相关地址只能是hdfsPath)
-> export export table tb_name to 'hdfs_path' 例: export table emp to '/export_emp'; -> import import table tb_name from 'hdfs_path' 例: import table emp_im from '/export_emp';
Hive HQL
1. 字段查询 -> select empno,ename from emp; 2. where、limit、distinct -> select * from emp where sal > 3000; -> select * from emp limit 5; -> select distinct deptno from emp; 3. between and,>,<,=,is null,is not null,in -> select * from emp where sal between 2000 and 3000; -> select * from emp where comm is null; -> select * from emp where sal in (2000,3000,4000); 4. count(),sum(),avg(),max(),min() -> select count(1) from emp; -> select sum(sal) form emp; -> select avg(sal) from emp; 5. group by,having -> select deptno,avg(sal) from emp group by deptno; -> select deptno,avg(sal) avgsal from emp group by deptno having avgsal >= 3000; 6. join -> 等值join(匹配共有的记录) select e.empno,e.deptno,e.ename,e.sal,e.mgr from emp e join dept d on e.deptno=d.deptno; -> 左join(左边为小表) select e.empno,e.deptno,e.ename,e.sal,e.mgr from emp e left join dept d on e.deptno=d.deptno; -> 右join(右边为小表) select e.empno,e.deptno,e.ename,e.sal,e.mgr from emp e right join dept d on e.deptno=d.deptno; -> 全join select e.empno,e.deptno,e.ename,e.sal,e.mgr from emp e full join dept d on e.deptno=d.deptno;
Hive mapreduce相关操作(重点)
1. 设置每个reduce处理的数据量 -> set hive.exec.reducers.bytes.per.reducer; 默认1G,当处理的数据量为10G时,将开启10个reduce,每个reduce处理1G 2. 设置最大运行reduce的个数 -> set hive.exec.reducers.max; 默认最大运行个数为999 3. 设置实际reduce的个数 -> set mapreduce.job.reduces; hive打印显示-1,hadoop默认为1
Hive 几种排序(重点)
1. order by (只针对一个文件排序,当有多个reduce Task生成多个文件时,排序失效) -> select * from emp order by sal desc; 2. sort by (对于每一个文件进行排序,注意目必须是绝对路径) -> set mapreduce.job.reduces=3; -> insert overwrite local directory '/home/liuwl/opt/datas/sortData' row format delimited fields terminated by ' ' select * from emp sort by sal; 需要注意的是如果使用order by 不管reduce Task设置多少,只生成一个文件,并为该文件排序 3. distribute by (底层为mapreduce的分区,一般与sort by 连用) -> insert overwrite local directory '/home/liuwl/opt/datas/sortData' row format delimited fields terminated by ' ' select * from emp distribute by deptno sort by sal; 4. cluster by (等价于distribute by xx sort by xx) # xx为同一字段 -> insert overwrite local directory '/home/liuwl/opt/datas/sortData' row format delimited fields terminated by ' ' select * from emp cluster by sal ;
Hive UDF(自定义函数,允许用户扩展HiveOL功能)(重点)
1. udf: 一进一出 upper/lower/day 2. udaf: 多进一出 count/max/min 3. udtf: 一进多出 ateral/view/explode udf:编程步骤 --> 继承 org.apache.hadoop.hive.ql.UDF --> 实现 evaluate函数,evaluate函数支持重载 注意:UDF必须要有返回类型,可以返回NULL,但是返回类型不能为void UDF中常用Text/LongWritable等类型,不推荐使用java -->代码 public Text evaluate(Text str){ return this.evaluate(str,new IntWritable(0)); } public Text evaluate(Text str, IntWritable flag){ if(str != null){ if(flag.get() == 0){ return new Text(str.toString().toLowerCase()); }else if(flag.get() ==1){ return new Text(str.toString().toUpperCase()); }else return null; }else return null; } --> 打包 --> 在hive中添加 ---> 关联jar包 add jar jar_path; ---> 创建方法 create temporary function tolower as 'com.hive.udf.UDFTest' ---> 测试 select ename,tolower(ename),tolower(tolower(ename),1) lowername from emp; ename lowername uppername SMITH smith SMITH ALLEN allen ALLEN WARD ward WARD JONES jones JONES MARTIN martin MARTIN BLAKE blake BLAKE CLARK clark CLARK SCOTT scott SCOTT KING king KING TURNER turner TURNER ADAMS adams ADAMS JAMES james JAMES FORD ford FORD MILLER miller MILLER -->案例2:去除所有双引号 -->代码 public Text evaluate(Text str){ if(str != null){ return new Text(str.toString().replaceAll(""", "")); }else return null; } --> 关联jar包 add jar jar_path; --> 创建方法 create temporary function rmquotes as 'com.hive.udf.RMQuotes' --> 测试 select dname,rmquotes(dname) rmquotes from dept_quotes; dname rmquotes "ACCOUNTING" ACCOUNTING "RESEARCH" RESEARCH "SALES" SALES "OPERATIONS" OPERATIONS -->案例3:去除多有引号,并取出get后的路径 如:"116.216.17.0" "31/Aug/2015:00:19:42 +0800" "GET /theme/styles.php/bootstrap/1427679483/all HTTP/1.1" "116.216.17.0" "31/Aug/2015:00:19:42 +0800" /theme/styles.php/bootstrap/1427679483/all -->准备数据: moodel.log "116.216.17.0" "31/Aug/2015:00:19:42 +0800" "GET /theme/styles.php/bootstrap/1427679483/all HTTP/1.1" "116.216.17.0" "31/Aug/2015:00:19:42 +0800" "GET /theme/image.php/bootstrap/theme/1427679483/fp/logo HTTP/1.1" "116.216.17.0" "31/Aug/2015:00:19:42 +0800" "GET /theme/image.php/bootstrap/core/1427679483/t/expanded HTTP/1.1" "116.216.17.0" "31/Aug/2015:00:19:42 +0800" "GET /theme/image.php/bootstrap/theme/1427679483/fp/search_btn HTTP/1.1" "116.216.17.0" "31/Aug/2015:00:19:42 +0800" "GET /theme/image.php/bootstrap/core/1427679483/t/collapsed HTTP/1.1" "116.216.17.0" "31/Aug/2015:00:19:42 +0800" "GET /theme/image.php/bootstrap/theme/1427679483/fp/footerbg HTTP/1.1" "116.216.17.0" "31/Aug/2015:00:19:42 +0800" "GET /theme/yui_combo.php?m/1427679483/theme_bootstrap/bootstrap/bootstrap-min.js HTTP/1.1" "116.216.17.0" "31/Aug/2015:00:19:42 +0800" "GET /theme/yui_combo.php?m/1427679483/block_navigation/navigation/navigation-min.js HTTP/1.1" "116.216.17.0" "31/Aug/2015:00:19:43 +0800" "GET /theme/yui_combo.php?m/1427679483/theme_bootstrap/zoom/zoom-min.js HTTP/1.1" "116.216.17.0" "31/Aug/2015:00:19:43 +0800" "GET /theme/yui_combo.php?3.17.2/cssbutton/cssbutton-min.css HTTP/1.1" "116.216.17.0" "31/Aug/2015:00:19:43 +0800" "GET /theme/yui_combo.php?m/1427679483/core/lockscroll/lockscroll-min.js HTTP/1.1" "116.216.17.0" "31/Aug/2015:00:19:43 +0800" "GET /theme/image.php/bootstrap/core/1427679483/t/block_to_dock HTTP/1.1" "116.216.17.0" "31/Aug/2015:00:19:43 +0800" "GET /theme/image.php/bootstrap/core/1427679483/t/switch_plus HTTP/1.1" "116.216.17.0" "31/Aug/2015:00:19:43 +0800" "GET /theme/image.php/bootstrap/core/1427679483/t/switch_minus HTTP/1.1" "116.216.17.0" "31/Aug/2015:00:19:45 +0800" "GET /course/view.php?id=27§ion=4 HTTP/1.1" "116.216.17.0" "31/Aug/2015:00:19:46 +0800" "GET /theme/image.php/bootstrap/page/1427679483/icon HTTP/1.1" "116.216.17.0" "31/Aug/2015:00:19:46 +0800" "GET /theme/image.php/bootstrap/core/1427679483/spacer HTTP/1.1" "116.216.17.0" "31/Aug/2015:00:19:46 +0800" "GET /theme/yui_combo.php?m/1427679483/core/formautosubmit/formautosubmit-min.js HTTP/1.1" "116.216.17.0" "31/Aug/2015:00:19:54 +0800" "GET /mod/page/view.php?id=11187§ion=4 HTTP/1.1" -->创建moodle表 create table if not exists moodle( ip string, date string, url string) row format delimited fields terminated by ' '; -->加载数据 load data local inpath '/home/liuwl/opt/datas/dd/moodle.log' into table moodle; -->代码 public Text evaluate(Text text){ if(text != null){ String strs = text.toString().replaceAll(""", ""); String str = ""; boolean isDate = false; try{ SimpleDateFormat sdf = new SimpleDateFormat("dd/MMM/yyyy:HH:mm:ss Z", new Locale("ENGLISH", "CHINA")); SimpleDateFormat sdf1 = new SimpleDateFormat("yyyyMMddHHmm",new Locale("CHINESE", "CHINA")); Date date = sdf.parse(strs); str=sdf1.format(date); isDate = true; }catch(ParseException p){ isDate = false; } // is date if(isDate){ return new Text(str); }else{ if(strs.indexOf("HTTP/1.1")>0){ return new Text(strs.split(" ")[1]); }else{ return new Text(strs.split(" ")[0]); } } }else return null; } --> 关联jar包 add jar jar_path; --> 创建方法 create temporary function mymoodle as 'com.hive.udf.mymoodle'; --> 测试 select mymoodle(ip) ip,mymoodle(date) date,mymoodle(url) url from moodle; ip date url 116.216.17.0 201508310019 /theme/styles.php/bootstrap/1427679483/all 116.216.17.0 201508310019 /theme/image.php/bootstrap/theme/1427679483/fp/logo 116.216.17.0 201508310019 /theme/image.php/bootstrap/core/1427679483/t/expanded 116.216.17.0 201508310019 /theme/image.php/bootstrap/theme/1427679483/fp/search_btn 116.216.17.0 201508310019 /theme/image.php/bootstrap/core/1427679483/t/collapsed 116.216.17.0 201508310019 /theme/image.php/bootstrap/theme/1427679483/fp/footerbg 116.216.17.0 201508310019 /theme/yui_combo.php?m/1427679483/theme_bootstrap/bootstrap/bootstrap-min.js 116.216.17.0 201508310019 /theme/yui_combo.php?m/1427679483/block_navigation/navigation/navigation-min.js 116.216.17.0 201508310019 /theme/yui_combo.php?m/1427679483/theme_bootstrap/zoom/zoom-min.js 116.216.17.0 201508310019 /theme/yui_combo.php?3.17.2/cssbutton/cssbutton-min.css 116.216.17.0 201508310019 /theme/yui_combo.php?m/1427679483/core/lockscroll/lockscroll-min.js 116.216.17.0 201508310019 /theme/image.php/bootstrap/core/1427679483/t/block_to_dock 116.216.17.0 201508310019 /theme/image.php/bootstrap/core/1427679483/t/switch_plus 116.216.17.0 201508310019 /theme/image.php/bootstrap/core/1427679483/t/switch_minus 116.216.17.0 201508310019 /course/view.php?id=27§ion=4 116.216.17.0 201508310019 /theme/image.php/bootstrap/page/1427679483/icon 116.216.17.0 201508310019 /theme/image.php/bootstrap/core/1427679483/spacer 116.216.17.0 201508310019 /theme/yui_combo.php?m/1427679483/core/formautosubmit/formautosubmit-min.js 116.216.17.0 201508310019 /mod/page/view.php?id=11187§ion=4
Hive中hiveserver2,beeline,java client
-->hiveserver2启动方式:bin/hiveserver2;bin/hiveserver2;bin/hive --service hiveserver2 -->beeline启动方式:bin/beeline -u jdbc:hive2://hadoop09-linux-01.ibeifeng.com:10000/workdb -n liuwl -p liuwl --> bin/beeline --> !connect jdbc:hive2://hadoop09-linux-01.ibeifeng.com:10000/workdb -->java client -->启动hiveserver2 -->编写代码: private static String driverName = "org.apache.hive.jdbc.HiveDriver"; private static String url = "jdbc:hive2://hadoop09-linux-01.ibeifeng.com:10000/workdb"; private static String username = "root"; private static String password = "root"; public static Connection getConnection(){ try { Class.forName(driverName); Connection con = DriverManager.getConnection(url, username, password); return con; } catch (ClassNotFoundException e) { e.printStackTrace(); System.exit(1); } catch (SQLException e) { e.printStackTrace(); } return null; } public static List<Object> querySql(Statement stmt, String sql) throws SQLException{ ResultSet res = stmt.executeQuery(sql); List<Object> objectList = new ArrayList<Object>(); while (res.next()) { objectList.add(res.getString(1)); } return objectList; } public static void main(String[] args) throws SQLException { Connection con = getConnection(); Statement stmt = con.createStatement(); List<Object> objectList = new ArrayList<Object>(); //query String qsql = "select * from emp"; objectList = querySql(stmt,qsql); for(int i = 0; i < objectList.size(); i++){ System.out.println(objectList.get(i)); } //regular String rsql = "select count(1) from emp"; objectList = querySql(stmt,rsql); for(int i = 0; i < objectList.size(); i++){ System.out.println(objectList.get(i)); } //create String csql = "create table if not exists test (key int, value string) row format delimited fields terminated by ' '"; stmt.execute(csql); //load //String lsql = "load data local inpath '/home/liuwl/opt/datas/test.txt' into table test"; //update start as 0.14 //String usql = "update table test set key =4 where value='uuuu'"; //stmt.executeUpdate(usql); //drop String dsql = "drop table if exists test"; if(!stmt.execute(dsql)){ System.out.println("success"); } }
Hive 本地模式(本地测试,只在当前节点运行)
hive.exec.mode.local.auto=true 使用条件 job的输入数据大小不能超过默认参数大小 inputbytes.size=128M job处理map task 的个数 4(最多4个) job处理reduce的个数 0/1(最多1个) 本地此时下加快job任务运行效率
Hive 部分调优
1. 大表拆分小表(过滤出需求分析所需要的字段) 2. 按字段分类存放 3. 使用外部表(删除表时仅删除冗余数据信息,不删除数据文件,可让多人使用同一张源表,减少存储空间) 4. 使用分区表(分区表在hdfs上以文件夹形式存在,提高查询效率,可以手动分区也可以动态分区) 5. 使用外部表+分区表 6. 数据的存储格式 列式存储+压缩 7. SQL语句的优化(优化+filter-->join) 8. mapreduce优化(并行执行:默认false) hive.exec.parallel=true hive.exec.parallel.thread.number=8 jvm重用 mapreduce.job.jvm.numtasks=$number 推测执行 mapreduce.map.speculative=true mapreduce.reduce.speculative=true hive.mapred.reduce.tasks.speculative.execution=true map和reduce的个数 map的个数 hdfs块的大小 dfs.blocks.size=128M 分片的大小 minsize/maxsize mapreduce.input.fileinputformat.split.minsize 企业中 文件大 少 200M 100个 map默认按块处理 文件小 多 40M 400个 map按分片
Hive 执行sql两种模式(Fetch Task与mapreduce)
--> hive.fetch.task.conversion--minimal # SELECT STAR, FILTER on partition columns, LIMIT only 译:在select *;使用分区作为过滤条件;limit语句 hive.fetch.task.conversion--more # SELECT, FILTER, LIMIT only (TABLESAMPLE, virtual columns) 译: 在所有select语句,数据取样, 虚拟列, --> 虚拟列(注意是双下划线) --> input__file__name # 数据的来源 --> block__offset_inside__file # 记录在块中的偏移量 --> row__offset__inside__block # 行的偏移量(默认不启用,需要修改hive.exec.rowoffset)
Hive 严格模式
--> hive.mapred.mode--(默认nonstrict) 注意: 在严格模式下 不允许由风险型sql语句: 笛卡尔积查询(使用join而不使用on或where) 分区表没有指定分区 order by没有使用limit bigint与string/double的比较