k-近邻(kNN, k-NearestNeighbor)算法是一种基本分类与回归方法
优缺点:
优点:精度高、对异常值不敏感、无数据输入假定
缺点:计算复杂度高、空间复杂度高
适用数据范围:数值型和标称型
流程伪代码:
对于每一个在数据集中的数据点:
计算目标的数据点(需要分类的数据点)与该数据点的距离
将距离排序:从小到大
选取前K个最短距离
选取这K个中最多的分类类别
返回该类别来作为目标数据点的预测值
核心代码:
def classify0(inX, dataSet, labels, k): # 1. 距离计算 dataSetSize = dataSet.shape[0] # tile生成和训练样本对应的矩阵,并与训练样本求差 diffMat = tile(inX, (dataSetSize, 1)) - dataSet # 取平方 sqDiffMat = diffMat ** 2 # 将矩阵的每一行相加 sqDistances = sqDiffMat.sum(axis=1) # 开方 distances = sqDistances ** 0.5 # 根据距离排序从小到大的排序,返回对应的索引位置 # argsort() 是将x中的元素从小到大排列,提取其对应的index(索引),然后输出到y。 # 例如:y=array([3,0,2,1,4,5]) 则,x[3]=1最小,所以y[0]=3;x[5]=5最大,所以y[5]=5。 # print 'distances=', distances sortedDistIndicies = distances.argsort() # 2. 选择距离最小的k个点 classCount = {} for i in range(k): # 找到该样本的类型 voteIlabel = labels[sortedDistIndicies[i]] # 在字典中将该类型加一 # 字典的get方法 # 如:list.get(k,d) 其中 get相当于一条if...else...语句,参数k在字典中,字典将返回list[k];如果参数k不在字典中则返回参数d,如果K在字典中则返回k对应的value值 # l = {5:2,3:4} # print l.get(3,0)返回的值是4; # Print l.get(1,0)返回值是0; classCount[voteIlabel] = classCount.get(voteIlabel, 0) + 1 # 3. 排序并返回出现最多的那个类型 # 字典的 items() 方法,以列表返回可遍历的(键,值)元组数组。 # 例如:dict = {'Name': 'Zara', 'Age': 7} print "Value : %s" % dict.items() Value : [('Age', 7), ('Name', 'Zara')] # sorted 中的第2个参数 key=operator.itemgetter(1) 这个参数的意思是先比较第几个元素 # 例如:a=[('b',2),('a',1),('c',0)] b=sorted(a,key=operator.itemgetter(1)) >>>b=[('c',0),('a',1),('b',2)] 可以看到排序是按照后边的0,1,2进行排序的,而不是a,b,c # b=sorted(a,key=operator.itemgetter(0)) >>>b=[('a',1),('b',2),('c',0)] 这次比较的是前边的a,b,c而不是0,1,2 # b=sorted(a,key=opertator.itemgetter(1,0)) >>>b=[('c',0),('a',1),('b',2)] 这个是先比较第2个元素,然后对第一个元素进行排序,形成多级排序。 sortedClassCount = sorted(classCount.items(), key=operator.itemgetter(1), reverse=True) return sortedClassCount[0][0]