zoukankan      html  css  js  c++  java
  • 神经网络的编程基础

    1、神经网络的计算通常包括前向传播(foward propagation)步骤和反向传播(backward propagation)的步骤;

    2、数据预处理:

    • X.shape:[nx,m]--->nx 是特征数,m为样本数
    • Y.shape:[1,m]
    • W.shape:[nx,1]
    • b---->是实数 
    • X 数据标准化

    3、激励函数:


     sigmoid(x)=1/(1+e-x)函数:

     1 import numpy as np
     2 def sigmoid(x):
     3     """
     4     Compute the sigmoid of x
     5 
     6     Arguments:
     7     x -- A scalar or numpy array of any size
     8 
     9     Return:
    10     s -- sigmoid(x)
    11     """
    12     
    13    
    14     s = 1.0/(1+np.exp(-x))
    15 
    16     
    17     return s

     softmax函数:

     1 def softmax(x):
     2     """Calculates the softmax for each row of the input x.
     3 
     4     Your code should work for a row vector and also for matrices of shape (n, m).
     5 
     6     Argument:
     7     x -- A numpy matrix of shape (n,m)
     8 
     9     Returns:
    10     s -- A numpy matrix equal to the softmax of x, of shape (n,m)
    11     """
    12     
    13  
    14     # Apply exp() element-wise to x. Use np.exp(...).
    15 
    16     x_exp = np.exp(x)
    17 
    18     # Create a vector x_sum that sums each row of x_exp. Use np.sum(..., axis = 1, keepdims = True).
    19 
    20     x_sum = np.sum(x_exp,axis=1,keepdims=True)
    21     
    22     # Compute softmax(x) by dividing x_exp by x_sum. It should automatically use numpy broadcasting.
    23 
    24     s = x_exp / x_sum
    25 
    26     
    27     return s

    4、二分类(Binary Classification)-Logistic Regression:


    Building the parts of our algorithm:

    • Define the model structure(such as number of input features)
    • Initialize the model's parameters
    • Loop:
      • Calculate current loss(forward propagation)
      • Calculate current gradient(backward propagation)
      • Update parameters(gradient descent)

    Forward and Backward propagation:

    • You get X
    • You compute  A=σ(wTX+b)=(a(0),a(1),...,a(m1),
    • You calculate the cost function:J=1/mmi=1y(i)log(a(i))+(1y(i))log(1a(i))
    • Backward propagation:
      • J/w=(1/m)X(AY)T
      •  
        J/b=1mi=1m(a(i)y(i))

     1 import numpy as np
     2 
     3 #define sigmoid
     4 
     5 def sigmoid(z):
     6     s=1.0/(1+np.exp(z))
     7 
     8 #Initializing parameters
     9 
    10 def initialize_with_zeros(dim):
    11     w=np.zeros((dim,1))
    12     b=0
    13     assert(w.shape==(dim, 1))
    14     assert(isinstance(b,float) or isinstance(b,int))
    15     return w,b
    16 
    17 # forward and backward propagate
    18 
    19 def propagate(w,b,X,Y):
    20         """
    21     Implement the cost function and its gradient for the propagation explained above
    22 
    23     Arguments:
    24     w -- weights, a numpy array of size (num_px * num_px * 3, 1)
    25     b -- bias, a scalar
    26     X -- data of size (num_px * num_px * 3, number of examples)
    27     Y -- true "label" vector (containing 0 if non-cat, 1 if cat) of size (1, number of examples)
    28 
    29     Return:
    30     cost -- negative log-likelihood cost for logistic regression
    31     dw -- gradient of the loss with respect to w, thus same shape as w
    32     db -- gradient of the loss with respect to b, thus same shape as b
    33     """
    34     m=X.shape[1]
    35     A=sigmoid(np.dot(w.T,X))
    36     cost=(-1.0/m)*np.sum(Y*np.log(A)+(1-Y)*np.log((1-A)))
    37     dw=(1/m)*np.dot(X,(A-Y).T)
    38     db=(1/m)*np.sum(A-Y)
    39     assert(dw.shape==w.shape)
    40     assert(db.type==b.type)
    41     cost=np.squeeze(cost)
    42     assert(cost.shape==())
    43     grads={"dw":dw,
    44                 "db":db} 
    45     return grads,cost
    46 
    47 #using gradient descent,The goal is to learn  ww  and  bb  by minimizing the cost function  JJ . For a parameter  θθ , the update rule is  θ=θ−α dθ , where  αα  is the learning rate.
    48 
    49 def optimize(w, b, X, Y, num_iterations, learning_rate, print_cost = False):
    50     costs=[]
    51     for i in range(num_iterations):
    52         grads, cost = propagate(w,b,X,Y)
    53         dw = grads["dw"]
    54         db = grads["db"]
    55         w = w - learning_rate * dw
    56         b = b - learning_rate * db
    57         if i%100==0:
    58             costs.append(cost)
    59         if print_cost and i%100==0:
    60             print ("Cost after iteration %i: %f" %(i, cost))
    61     params = {"w": w,
    62               "b": b}
    63     
    64     grads = {"dw": dw,
    65              "db": db}
    66     
    67     return params, grads, costs
    68 
    69 #predict
    70 def predict(w,b,X):
    71     m=X.shape[1]
    72     Y_prediction=np.zeros((1,m))
    73     w=w.reshape(X.shape[0],1)
    74     A=sigmoid(np.dot(w.T,X)+b)
    75     for i in range(A.shape[1]):
    76         Y_prediction[0,i]=np.where(A[0,i]>=0.5,1,0)
    77     assert(Y_prediction.shape==(1,m))
    78     return Y_prediction
    79 
    80 #model
    81 
    82 def model(X_train, Y_train, X_test, Y_test, num_iterations = 2000, learning_rate = 0.5, print_cost = False):
    83      w, b = initialize_with_zeros(X_train.shape[0])
    84      parameters, grads, costs = optimize(w, b, X_train, Y_train, num_iterations, learning_rate, print_cost)
    85     Y_prediction_test = predict(w, b, X_test)
    86     Y_prediction_train = predict(w, b, X_train)
    87     print("train accuracy: {} %".format(100 - np.mean(np.abs(Y_prediction_train - Y_train)) * 100))
    88     print("test accuracy: {} %".format(100 - np.mean(np.abs(Y_prediction_test - Y_test)) * 100))
    89     d = {"costs": costs,
    90          "Y_prediction_test": Y_prediction_test, 
    91          "Y_prediction_train" : Y_prediction_train, 
    92          "w" : w, 
    93          "b" : b,
    94          "learning_rate" : learning_rate,
    95          "num_iterations": num_iterations}
    96     
    97     return d
  • 相关阅读:
    招聘测试开发二三事
    首次曝光:大厂都是这样过1024的,看的我酸了
    1024程序员节:今天,我们不加班!
    TesterHome创始人思寒:如何从手工测试进阶自动化测试?十余年经验分享
    ASP.NET网站中设置404自定义错误页面
    IIS 7 应用程序池自动回收关闭的解决方案
    ASP.NET项目中引用全局dll
    ASP.NET WebForm中前台代码如何绑定后台变量
    Git使用过程中出现项目文件无法签入Source Control的情况
    ASP.NET中身份验证的三种方法
  • 原文地址:https://www.cnblogs.com/easy-wang/p/9963481.html
Copyright © 2011-2022 走看看