zoukankan      html  css  js  c++  java
  • multiprocessing模块

    相关知识

    在使用multiprocessing库实现多进程前,了解一下操作系统的相关知识:

    Unix/Linux实现多进程

      Unix/Linux操作系统提供了一个fork()系统调用,它非常特殊。普通的函数调用,调用一次,返回一次,但fork()调用一次,返回两次,因为操作系统自动把当前父进程复制了一份子进程,然后分别在父进程和子进程内返回。

      子进程永远返回0,而父进程返回子进程的ID。这样,一个父进程可以fork出很多子进程,父进程记下每个子进程的ID,而子进程只需要调用getppid()就可以拿到父进程ID。

      python的os模块封装了常见的系统调用,其中包括fork,可以在python程序中轻松创建子进程。

    Windows实现多进程:

      由于windows中没有fork调用,而如果我们需要在Windows上用python编写多进程的程序,就需要使用multiprocessing模块。

    由于GIL(全局解释锁)的问题,python多线程并不能充分利用多核处理器。如果想要充分地使用多核CPU的资源,在python中大部分情况需要使用多进程。

    multiprocessing可以给每个进程赋予单独的Python解释器,这样就规避了全局解释锁所带来的问题。与threading.Thread类似,可以利用multiprocessing.Process对象来创建一个进程。multiprocessing支持子进程通信共享数据、执行不同形式的同步,提供了Process、Queue、Pipe、Lock等组件。


    Process类

    Process类可以创建新的子进程对象

    p = multiprocessing.Process(group=None, target=None, name=None, args=(), kwargs={})

    参数:

      group:分组,实际上很少用到

      target:表示调用对象,即子进程要执行的任务,可以传入方法名

      name:子进程名称

      args:表示被调用对象的位置参数元组

      kwargs:表示调用对象的字典

    实例方法:

    1. p.start():启动进程,并调用子进程中的p.run()方法
    2. p.run():进程启动时运行的方法,正是它去调用target指定的函数,我们自定义类时也必须实现该方法
    3. p.terminate():强制终止进程p,不会进行任何清理操作,如果p创建了子进程,该子进程就成了僵尸进程,使用该方法需要特别小心这种情况,如果p还保存了一个锁那么也将不会被释放,进而导致死锁
    4. p.is_alive():如果p仍然运行,返回True
    5. p.join([timeout]):主线程等待p终止(强调:是主线程处于等待的状态,而p是处于运行状态),当p进程执行结束才会继续向下执行,timeout是可选的超时时间,需要强调的是,p.join只能使start开启的进程等待,而不是能使run开启的进程等待

    实例属性:

    1. p.daemon:默认是False,如果设为True,代表p为后台运行的守护进程,当p的父进程终止时,p也随之终止,并且设定为True后,p不能创建自己的新进程,必须在p.start()之前进行设置
    2. p.name:进程的名字
    3. p.pid:进程的进程号
    4. p.exitcode:进程在运行时为None,如果为-N,表示被信号N结束(一般用不到,了解即可)
    5. p.authkey:进程的身份验证键,默认是由os.urandom()随机生成的32字符的字符串,这个键的用途是为涉及网络连接的底层进程间通信提供安全性,这类连接只有在具有相同的身份验证键时才能成功(了解即可)

    注意:

    • Process()需要使用关键字的方式指定参数,args为位置参数
    • 创建子进程一定要在主进程没有执行死循环的时候创建,不然子进程无法创建
    • 因为在Windows中存在的问题(没有linux操作系统中创建进程的机制fork),在创建进程的时候会自动import启动它的这个文件,而在import的时候又执行了整个文件,因此如果将创建进程对象的过程直接写在文件内,会无限递归创建子进程报错,必须把创建子进程的部分写在__name__ == '__main__'中
    • 父进程的结束不影响子进程
    • 多个进程同时运行实则是异步的,即子进程的执行顺序不是根据启动顺序决定的,但是加入p.join()后异步变同步,子进程p会执行完毕后再执行join后的父进程
    • 可以通过继承Process类的方式构建进程对象,然后创建实例后调用start()方法开启进程,利用os.getpid()和os.ppid()两个方法可以获取当前进程的pid和父进程的pid
    • 不同的进程之间的数据是不共享的,是独立隔离的,父进程在创建子进程的过程中对父进程的全局变量做了备份,如果访问会报错(内存空间独立)
    • 后台进程即守护进程,会在主进程代码执行结束后就终止,且无法开启子进程,否则报错
    • 关闭进程不会立刻关闭,所以需要用p.is_alive判断结果

    Lock类(锁)

    当多个进程使用同一份数据资源的时候,就会引发数据安全或顺序混乱的问题,添加锁后,先获得锁的进程会阻塞后面的进程

    l = multiprocessing.Lock():实例化一个锁对象

    l.acquire():获得钥匙,此时数据只有当前进程可操作

    l.release():返还要是,此时下一个先获得钥匙的进程可操作数据

    上述的过程也可以使用关键字with加锁对象,将加锁的代码写入with代码块,如:

    with i:
      
    pass

    # 等同于
    l.acquire()
    pass
    l.release()

    加锁可以保证多个进程修改同一块数据时,同一时间只能有一个进程可以进行修改,即串行的修改,速度降低了但保证了数据安全

    虽然可以用文件共享数据来实现进程之间的通信,但问题是:

      效率低(共享数据基于文件,而文件是硬盘上的数据)

      需要自己加锁处理

    因此我们另寻一种方法解决这个问题,即multiprocessing模块所提供的基于消息的IPC通信机制:队列和管道

    特点:高效且合适的处理好锁的问题

    队列和管道都是将数据存放于内存中,队列又是基于(管道+锁)实现的,可以让我们从复杂的锁问题解脱出来,尽量避免使用共享数据,尽可能的使用消息传递和队列,避免处理复杂的同步和锁的问题,而且在进程数目增多时,往往可以获得更好的可扩展性


    Semaphore类(信号量)

    互斥锁同时允许一个线程更改数据,而信号量是同时允许指定数量的线程更改数据

    Semaphore相当于N把锁,获取其中一把即可。信号量的总数N在构造时传入,如果信号量为0,则进程堵塞,直到信号大于0,主要用来控制对共享资源的访问数量(进程池的最大连接数量)

    信号量同步是基于一个内部的计数器,每调用一次acquire(),计数器减1,每调用一次release(),计数器加1,计数器最大为构造时传入的N,最小为0(此时acquire()调用会被堵塞)

    信号量同步机制适用于访问像服务器、文件这样的有限资源

    s = multiprocessing.Semaphore(N)  # 创建信号量对象,锁池中有N个锁
    
    s.acquire()  # 取出一个锁,计数器-1
    
    s.release()  # 释放一个锁,计数器+1

     Event类

    线程事件用于主线程控制其他线程的执行,事件对象主要提供了三个方法set()、clear()、wait()、is_set()

    事件的处理机制:

    全局定义了一个变量,变量值默认为False,wait()方法起阻塞的作用,当变量值设置为True,wait()方法不再阻塞

    e = multiprocessing.Event():构建事件对象

    e.is_set():查看默认为False的变量

    e.set():将变量设置为True

    e.clear():将变量设置为False

    e.wait([timeout]):若变量为False,此方法会使进程堵塞,若变量为True,此方法不会使进程堵塞,若设置参数timeout,等待指定时间后将不再阻塞


    Queue类(队列)    

    共享的多进程进程安全队列,可以实现多进程的数据传递

    队列的底层由管道和锁构成

    q = Queue(maxsize):创建队列对象,参数maxsize是队列中允许的最大项数,如果省略此参数则大小无限制

    q.put(item):将item加入队列,如果当前队列已满,将会阻塞,直到有数据从管道中取出为止

    q.put_nowait(item):将item加入队列,如果当前队列已满,不会阻塞,但会抛出异常

    q.get():返回放入队列中的一项数据,队列是先进先出,如果当前队列为空,就会阻塞,直到有数据进来

    q.get_nowait():返回放入队列中的一项数据,如果当前队列为空,不会阻塞,但会抛出异常

    q.empty():判断队列是否为空,为空返回True,不为空返回False,如果其他进程或者线程正在往队列中添加数据,结果往往不可靠。在返回和使用之间,队列中可能已经发生了变化

    q.size():返回队列中的数据量,同上不可靠

    q.full():判断队列是否已满,同上不可靠


    JoinableQueue类(队列进阶)

    继承于Queue,但队列允许项目的消费者通知生产者项目已经成功处理,通知进程是用共享的信号和条件变量来实现的。

    j = JoinableQueue(maxsize)

    实例方法与Queue的实例方法大致相同,除此之外还提供了以下方法:

    j.task_done():消费者使用这个方法发出信号,表示j.get()返回的项已经被处理,如果调用此方法的次数大于从队列中删除的项目数量,将抛出异常

    j.join():生产者使用这个方法阻塞,直到队列中所有项全被处理,阻塞将持续到为队列中的每个项均调用j.task_done()为止

    生产者消费者模式:

    在并发编程中使用生产者和消费者模式能够解决绝大多数并发问题,该模型通过平衡生产线程和消费线程的工作能力来提高程序整体处理数据的速度。

    生产者指的是生产数据的线程,消费者就是消费数据的线程。在多线程开发中,如果生产者的速度大于消费者,那么生产者就需要等待消费者处理完,才能继续生产数据,反之消费者就必须等待生产者。为了解决上述问题从而引出生产者消费者模式。

    生产者消费者模式是通过一个额外的容器解决两者间的强耦合问题,生产者和消费者不再直接通信,而是通过强阻塞队列进行通讯,所以生产者生产数据后不用等待消费者处理,而是直接扔给阻塞队列,消费者也不再向生产者要数据,而是从队列中提取,阻塞队列起到了缓冲的作用,从一定程度上平衡了两者的处理能力。

    from multiprocessing import Process, JoinableQueue
    
    def consumer(name, queue):
        while 1:
            weapon = queue.get()
            print("33[31m%s购买了%s" % (name, weapon))
            queue.task_done()  # 记录已处理了多少个数据
    
    
    def producer(name, queue):
        for i in range(20):
            weapon = "33[36m%s生产的第%s件商品33[0m" % (name, i + 1)
            queue.put(weapon)  # 放入生产的商品
            queue.join()  # 每生产一个商品便会阻塞,等待购买
    
    
    if __name__ == '__main__':
        q = JoinableQueue(10)  # 队列最大容量10
        pro_1 = Process(target=producer, args=("torbjorn", q))
        pro_2 = Process(target=producer, args=("symmetra", q))
        pro_3 = Process(target=producer, args=("orisa", q))
        con_1 = Process(target=consumer, args=("mccree", q))
        con_2 = Process(target=consumer, args=("tracer", q))
        p_list = [pro_1, pro_2, pro_3, con_1, con_2]
        con_1.daemon = True  # 设置成守护进程,父进程结束时,两个消费者子进程理应结束
        con_2.daemon = True
        [p.start() for p in p_list]  # 启动这些进程
        [p.join() for p in p_list[:3]]
    
    
    # 最后的结果是mccree和tracer争抢三家生产的商品,三家生产者同时生产
    

    Pipe类(管道)

    p = Pipe():返回的是一个管道的两端的元组对象

    p.send(item):向管道中发送数据

    p.recv(item):接收管道中的数据,如果管道中无数据且另一端关闭后仍接收数据将抛出异常

    p.close():关闭管道


    Manager

    进程间的数据是独立的,可以借助队列或者管道实现通信,但二者都属于消息传递,可以通过Manager完成进程间的数据共享

    m = Manager()

    m.dict():创建一个字典的共享数据,可在另外的进程中直接使用

    m.list():创建一个列表的共享数据,可在另外的进程中直接使用

    ...

    注意:

    在创建一个Manager对象时,程序额外启动了一个阻塞的server服务,以此实现多进程间的数据安全,即正常情况下不同进程对同一数据的操作是互斥的,一个进程向server请求数据,再把这部分数据修改,返回给server,之后server再去处理其他进程的请求。但是如果没有将数据返回给server,又向server请求数据,就会发生数据混乱,可以通过锁解决问题


    Pool(进程池) 

    在实际问题中,待执行的任务量可能是十分巨大的,不可能为每一个任务都去创建一个进程(创建进程和销毁进程是有开销的,操作系统也不会允许这么多进程的执行),这时就可以引入进程池的概念

    进程池即一个容器,在里面放上固定数量的进程,有任务要处理时从池中取一个进程,等任务处理完毕后,进程并不会销毁,而是重新放回进程池中等待新的任务。如果任务量大时,任务会等待至进有程执空闲为止。进程池中的进程数量固定,那么不会出现上述问题,也节省了开闭进程的时间开销,一定程度上实现并发效果

    p = Pool([numprocess [, initializer [, initargs]]]):创建进程池

    参数:

    • numprocess:要创建的进程数,如果省略,将使用os.cpu_count()所返回的值
    • initializer:每个工作进程启动时要执行的可调用对象(任务),默认为None
    • initargs:要传给调用对象的参数组 

    实例方法:

    • p.apply(func [, args [, kwargs]]):在一个池工作进程中执行函数func(*args, **kwargs),然后返回结果,这个操作并不会在池中所有进程中执行函数func,如果要通过不同参数并发地执行func函数,就必须从不同线程调用apply()或apply_async()
    • p.apply_async(func [, args [, kwargs]], callback=None):同上,但异步执行,func返回的结果将传递给callback,callback回调函数禁止执行任何阻塞操作,否则j将会接收其他异步操作中的结果
    • p.map (func,iterable):自动往进程池中提交任务
    • p.close():关闭进程池,防止进一步操作,如果所有操作持续挂起,将在工作进程终止前完成
    • p.join():等待所有工作进程(所有子进程)退出,此方法只能在close()或terminate()之后调用

    apply_async和map_async方法的返回值是AsyncResult的实例对象,有以下方法:

    • obj.get([timeout]):返回结果,如果有必要则等待结果到达,参数timeout可选,如果在指定时间内仍没有结果,抛出异常
    • obj.ready():如果调度完成,返回True
    • obj.successful():如果调用完成也没有抛出异常,返回True,注意在有结果前就调用此方法会抛出异常
    • obj.wait(timeout):等待结果变为可用
    • obj.terminate():立即终止工作进程,同时不执行任何清理或结束任何挂起的工作,如果p(进程池对象)被垃圾回收,将自动调用此方法

    apply_async()方法的注意事项:

    • 异步处理任务时,必须加上close()和join(),进程池中所有进程都是守护进程
    • 进程任务的返回值,作为回调函数的参数传入,进一步处理结果
    • 回调函数是由主进程调用的,而非子进程,子进程只是将结果传递给回调函数
    • apply()方法的返回对象没有get等方法,因为apply()是同步的,可以直接获取结果
    • apply_async()方法的返回对象的get方法是阻塞等待的,如果没有使用进程池的close、join方法,也可以通过循环使用get方法达到阻塞完成任务的目的

    进程池比手动开启多个进程效率要高(省去了销毁、调度的开销)

    异步比同步效率要高


    multiprocessing模块中的函数

    1. multiprocessing.cpu_count():获取当前机器的CPU核心数量
    2. multiprocessing.active_children():得到所有正在运行的进程
  • 相关阅读:
    网络管理工具:Wireshark
    WAP header 信息的意义
    Visual Studio 2005 发布网站提示发布成功 但指定文件夹下没任何文件问题的解决
    Hello Win
    [转]手把手教你卸载oracle 10g
    如何识别 SQL Server 的版本
    生成insert sql脚本的存储过程
    JQuery触发事件
    PHP事务的使用方法
    PHP session和cookie
  • 原文地址:https://www.cnblogs.com/eat-w/p/12078785.html
Copyright © 2011-2022 走看看