zoukankan      html  css  js  c++  java
  • 迷宫里的动态规划应用

    [LeetCode 63] Unique Paths II

    题目

    A robot is located at the top-left corner of a m x n grid (marked 'Start' in the diagram below).
    The robot can only move either down or right at any point in time. The robot is trying to reach the bottom-right corner of the grid (marked 'Finish' in the diagram below).
    Now consider if some obstacles are added to the grids. How many unique paths would there be?
    
    An obstacle and empty space is marked as 1 and 0 respectively in the grid.
    Note: m and n will be at most 100.
    

    测试案例

    Input:
    [
      [0,0,0],
      [0,1,0],
      [0,0,0]
    ]
    Output: 2
    Explanation:
    There is one obstacle in the middle of the 3x3 grid above.
    There are two ways to reach the bottom-right corner:
    1. Right -> Right -> Down -> Down
    2. Down -> Down -> Right -> Right
    

    思路

    记 nums[i][j] 表示从 (i,j) 点到达右下角的不同路径数。那么有如下递归式:

    [nums[i][j] = lbrace egin{align} nums[i + 1][j] + num[i][j + 1] , ;(i,j) 处无障碍 \ 0,;(i,j) 处有障碍 end{align} ]

    代码如下

    class Solution {
        public int uniquePathsWithObstacles(int[][] obstacleGrid) {
            int m, n;        
            if((m = obstacleGrid.length) < 1 || (n = obstacleGrid[0].length) < 1){
                return 0;
            }                
            int[][] nums = new int[m][n];
            if((nums[m - 1][n - 1] = 1 - obstacleGrid[m - 1][n - 1]) == 0){
                return 0;
            }
            for(int i = n - 2; i > -1; i--){
                if(obstacleGrid[m - 1][i] == 1){
                    nums[m - 1][i] = 0;
                }
                else{
                    nums[m - 1][i] = nums[m - 1][i + 1];
                }            
            }
            for(int i = m - 2; i > -1; i--){
                if(obstacleGrid[i][n - 1] == 1){
                    nums[i][n - 1] = 0;
                }
                else{
                    nums[i][n - 1] = nums[i + 1][n - 1];    
                }            
            }
            for(int i = m - 2; i > -1; i--){
                for(int j = n - 2; j > -1; j--){
                    if(obstacleGrid[i][j] == 1){
                        nums[i][j] = 0;
                    }
                    else{
                        nums[i][j] = nums[i + 1][j] + nums[i][j + 1];
                    }
                }
            }
            return nums[0][0];
        }
    }
    

    [LeetCode 64] Minimum Path Sum

    题目

    Given a m x n grid filled with non-negative numbers, find a path from top left to bottom right which minimizes the sum of all numbers along its path.
    
    Note: You can only move either down or right at any point in time.
    

    测试案例

    Input:
    [
      [1,3,1],
      [1,5,1],
      [4,2,1]
    ]
    Output: 7
    Explanation: Because the path 1→3→1→1→1 minimizes the sum.
    

    代码如下

    class Solution {
        public int minPathSum(int[][] grid) {
            int m = grid.length, n = grid[0].length;        
            int[][] price = new int[m][n];
            price[m - 1][n - 1] = grid[m - 1][n - 1];
            for(int i = n -2; i > -1; i--){
                price[m - 1][i] = price[m - 1][i + 1] + grid[m - 1][i];
            }
            for(int i = m - 2; i > -1; i--){
                price[i][n - 1] = price[i + 1][n - 1] + grid[i][n - 1];
            }
            for(int i = m - 2; i> -1; i--){
                for(int j = n -2; j > -1; j--){
                    price[i][j] = price[i + 1][j];
                    if(price[i][j] > price[i][j + 1]){
                        price[i][j] = price[i][j + 1];
                    }
                    price[i][j] += grid[i][j];
                }
            }
            return price[0][0];
        }
    }
    
  • 相关阅读:
    OCP-1Z0-053-V12.02-15题
    Boost.Asio性能测试
    使用asio搭建服务器
    boost::asio::ip::tcp::socket is connected?(如何知道socket的链接是链接或断开?)
    boost::async_read_some连续接收数据
    基于boost asio实现的支持ssl的通用socket框架
    Boost.Asio的使用技巧
    Matlab基本函数-expm函数
    Matlab基本函数-exp函数
    OCP-1Z0-053-V12.02-337题
  • 原文地址:https://www.cnblogs.com/echie/p/9594499.html
Copyright © 2011-2022 走看看