zoukankan      html  css  js  c++  java
  • 迷宫里的动态规划应用

    [LeetCode 63] Unique Paths II

    题目

    A robot is located at the top-left corner of a m x n grid (marked 'Start' in the diagram below).
    The robot can only move either down or right at any point in time. The robot is trying to reach the bottom-right corner of the grid (marked 'Finish' in the diagram below).
    Now consider if some obstacles are added to the grids. How many unique paths would there be?
    
    An obstacle and empty space is marked as 1 and 0 respectively in the grid.
    Note: m and n will be at most 100.
    

    测试案例

    Input:
    [
      [0,0,0],
      [0,1,0],
      [0,0,0]
    ]
    Output: 2
    Explanation:
    There is one obstacle in the middle of the 3x3 grid above.
    There are two ways to reach the bottom-right corner:
    1. Right -> Right -> Down -> Down
    2. Down -> Down -> Right -> Right
    

    思路

    记 nums[i][j] 表示从 (i,j) 点到达右下角的不同路径数。那么有如下递归式:

    [nums[i][j] = lbrace egin{align} nums[i + 1][j] + num[i][j + 1] , ;(i,j) 处无障碍 \ 0,;(i,j) 处有障碍 end{align} ]

    代码如下

    class Solution {
        public int uniquePathsWithObstacles(int[][] obstacleGrid) {
            int m, n;        
            if((m = obstacleGrid.length) < 1 || (n = obstacleGrid[0].length) < 1){
                return 0;
            }                
            int[][] nums = new int[m][n];
            if((nums[m - 1][n - 1] = 1 - obstacleGrid[m - 1][n - 1]) == 0){
                return 0;
            }
            for(int i = n - 2; i > -1; i--){
                if(obstacleGrid[m - 1][i] == 1){
                    nums[m - 1][i] = 0;
                }
                else{
                    nums[m - 1][i] = nums[m - 1][i + 1];
                }            
            }
            for(int i = m - 2; i > -1; i--){
                if(obstacleGrid[i][n - 1] == 1){
                    nums[i][n - 1] = 0;
                }
                else{
                    nums[i][n - 1] = nums[i + 1][n - 1];    
                }            
            }
            for(int i = m - 2; i > -1; i--){
                for(int j = n - 2; j > -1; j--){
                    if(obstacleGrid[i][j] == 1){
                        nums[i][j] = 0;
                    }
                    else{
                        nums[i][j] = nums[i + 1][j] + nums[i][j + 1];
                    }
                }
            }
            return nums[0][0];
        }
    }
    

    [LeetCode 64] Minimum Path Sum

    题目

    Given a m x n grid filled with non-negative numbers, find a path from top left to bottom right which minimizes the sum of all numbers along its path.
    
    Note: You can only move either down or right at any point in time.
    

    测试案例

    Input:
    [
      [1,3,1],
      [1,5,1],
      [4,2,1]
    ]
    Output: 7
    Explanation: Because the path 1→3→1→1→1 minimizes the sum.
    

    代码如下

    class Solution {
        public int minPathSum(int[][] grid) {
            int m = grid.length, n = grid[0].length;        
            int[][] price = new int[m][n];
            price[m - 1][n - 1] = grid[m - 1][n - 1];
            for(int i = n -2; i > -1; i--){
                price[m - 1][i] = price[m - 1][i + 1] + grid[m - 1][i];
            }
            for(int i = m - 2; i > -1; i--){
                price[i][n - 1] = price[i + 1][n - 1] + grid[i][n - 1];
            }
            for(int i = m - 2; i> -1; i--){
                for(int j = n -2; j > -1; j--){
                    price[i][j] = price[i + 1][j];
                    if(price[i][j] > price[i][j + 1]){
                        price[i][j] = price[i][j + 1];
                    }
                    price[i][j] += grid[i][j];
                }
            }
            return price[0][0];
        }
    }
    
  • 相关阅读:
    数字随机码
    MYSQL数据导出乱码 MYSQL数据导入乱码
    提交表单弹出新窗口
    腾讯捐款居然用Q币,无耻!
    PowerShell如何依靠全局错误处理并执行脚本
    Windows PowerShell 2.0语言之函数和过滤器
    Windows PowerShell 2.0创建调用脚本文件
    Windows PowerShell 2.0 开发之命令别名
    Windows PowerShell 2.0之函数和脚本块共存
    Windows PowerShell 2.0命令别名技巧与内置别名
  • 原文地址:https://www.cnblogs.com/echie/p/9594499.html
Copyright © 2011-2022 走看看