zoukankan      html  css  js  c++  java
  • [Stanford Algorithms: Design and Analysis, Part 2] c17-21 greedy algorithm | prim MST

    1. INTRODUCTION [Chapter 17]

      1. Overview, Resources, and Policies
         
      2. Pre-Course Survey
         
      3. All Lecture slides
         
    2. TWO MOTIVATING APPLICATIONS [Chapter 18]

      1. Overview
         
      2. Application: Internet Routing (10 min)
         
      3. Application: Sequence Alignment (8 min)
         
    3. INTRODUCTION TO GREEDY ALGORITHMS [Chapter 19]

      1. Introduction to Greedy Algorithms (12 min)
         
      2. Application: Optimal Caching (10 min)
         
    4. A SCHEDULING APPLICATION  [Chapter 20]

      1. Problem Definition (5 min)
         
      2. A Greedy Algorithm (12 min)
         
      3. Correctness Proof - Part I (6 min)
         
      4. Correctness Proof - Part II (4 min)
         
      5. Handling Ties [Advanced - Optional] (7 min)
         
    5. PRIM'S MINIMUM SPANNING TREE ALGORITHM [Chapter 21]

      1. MST Problem Definition (11 min)
         
      2. Prim's MST Algorithm (7 min)
         
      3. Correctness Proof I (15 min)
         
      4. Correctness Proof II (8 min)
         
      5. Proof of Cut Property [Advanced - Optional] (11 min)
         
      6. Fast Implementation I (14 min)
         
      7. Fast Implementation II (9 min)
         
    6. Homework 1

      1. Problem Set 1
        Problem Set This content is graded
      2. Optional Theory Problems
         
      3. Programming Assignment 1
        Programming Assignment This content is graded
        This is your last visited course section.Resume Course 
    7. KRUSKAL'S MINIMUM SPANNING TREE ALGORITHM [Chapter 22]

      1. Overview
         
      2. Kruskal's MST Algorithm (7 min)
         
      3. Correctness of Kruskal's Algorithm (9 min)
         
      4. Implementing Kruskal's Algorithm via Union-Find I (9 min)
         
      5. Implementing Kruskal's Algorithm via Union-Find II (13 min)
         
      6. MSTs: State-of-the-Art and Open Questions [Advanced - Optional] (9 min)
         
    8. CLUSTERING [Chapter 23]

      1. Application to Clustering (11 min)
         
      2. Correctness of Clustering Algorithm (9 min)
         
    9. ADVANCED UNION-FIND [Chapter 24]

      1. Lazy Unions [Advanced - Optional] (10 min)
         
      2. Union-by-Rank [Advanced - Optional] (12 min)
         
      3. Analysis of Union-by-Rank [Advanced - Optional] (14 min)
         
      4. Path Compression [Advanced - Optional] (14 min)
         
      5. Path Compression: The Hopcroft-Ullman Analysis I [Advanced - Optional] (9 min)
         
      6. Path Compression: The Hopcroft-Ullman Analysis II [Advanced - Optional] (11 min)
         
      7. The Ackermann Function [Advanced - Optional] (16 min)
         
      8. Path Compression: Tarjan's Analysis I [Advanced - Optional] (14 min)
         
      9. Path Compression: Tarjan's Analysis II [Advanced - Optional] (13 min)
         
    10. HUFFMAN CODES [Chapter 25]

      1. Introduction and Motivation (9 min)
         
      2. Problem Definition (10 min)
         
      3. A Greedy Algorithm (16 min)
         
      4. A More Complex Example (4 min)
         
      5. Correctness Proof I (10 min)
         
      6. Correctness Proof II (12 min)
         
    11. Homework 2

      1. Problem Set 2
        Problem Set This content is graded
      2. Optional Theory Problems
         
      3. Programming Assignment 2
        Programming Assignment This content is graded
    12. INTRODUCTION TO DYNAMIC PROGRAMMING [Chapter 26]

      1. Overview
         
      2. Introduction: Weighted Independent Sets in Path Graphs (7 min)
         
      3. WIS in Path Graphs: Optimal Substructure (9 min)
         
      4. WIS in Path Graphs: A Linear-Time Algorithm (9 min)
         
      5. WIS in Path Graphs: A Reconstruction Algorithm (6 min)
         
      6. Principles of Dynamic Programming (7 min)
         
    13. THE KNAPSACK PROBLEM [Chapter 27]

      1. The Knapsack Problem (9 min)
         
      2. A Dynamic Programming Algorithm (9 min)
         
      3. Example [Review - Optional] (12 min)
         
    14. SEQUENCE ALIGNMENT [Chapter 28]

      1. Optimal Substructure (13 min)
         
      2. A Dynamic Programming Algorithm (12 min)
         
    15. OPTIMAL BINARY SEARCH TREES [Chapter 29]

      1. Problem Definition (12 min)
         
      2. Optimal Substructure (9 min)
         
      3. Proof of Optimal Substructure (6 min)
         
      4. A Dynamic Programming Algorithm I (9 min)
         
      5. A Dynamic Programming Algorithm II (9 min)
         
    16. Homework 3

      1. Problem Set 3
        Problem Set This content is graded
      2. Optional Theory Problems
         
      3. Programming Assignment 3
        Programming Assignment This content is graded
    17. THE BELLMAN-FORD ALGORITHM: [Chapter 30]

      1. Overview
         
      2. Single-Source Shortest Paths, Revisited (10 min)
         
      3. Optimal Substructure (10 min)
         
      4. The Basic Algorithm I (8 min)
         
      5. The Basic Algorithm II (10 min)
         
      6. Detecting Negative Cycles (9 min)
         
      7. A Space Optimization (12 min)
         
      8. Internet Routing I [Optional] (11 min)
         
      9. Internet Routing II [Optional] (6 min)
         
    18. ALL-PAIRS SHORTEST PATHS [Chapter 31]

      1. Problem Definition (7 min)
         
      2. Optimal Substructure (12 min)
         
      3. The Floyd-Warshall Algorithm (13 min)
         
      4. A Reweighting Technique (14 min)
         
      5. Johnson's Algorithm I (11 min)
         
      6. Johnson's Algorithm II (11 min)
         
    19. Homework 4

      1. Problem Set 4
        Problem Set This content is graded
      2. Optional Theory Problems
         
      3. Programming Assignment 4
        Programming Assignment This content is graded
    20. NP-COMPLETE PROBLEMS [Chapter 32]

      1. Overview
         
      2. Polynomial-Time Solvable Problems (14 min)
         
      3. Reductions and Completeness (13 min)
         
      4. Definition and Interpretation of NP-Completeness I (10 min)
         
      5. Definition and Interpretation of NP-Completeness II (7 min)
         
      6. The P vs. NP Question (9 min)
         
      7. Algorithmic Approaches to NP-Complete Problems (12 min)
         
    21. FASTER EXACT ALGORITHMS FOR NP-COMPLETE PROBLEMS [Chapter 33]

      1. The Vertex Cover Problem (8 min)
         
      2. Smarter Search for Vertex Cover I (9 min)
         
      3. Smarter Search for Vertex Cover II (7 min)
         
      4. The Traveling Salesman Problem (14 min)
         
      5. A Dynamic Programming Algorithm for TSP (12 min)
         
    22. Homework 5

      1. Problem Set 5
        Problem Set This content is graded
      2. Optional Theory Problems
         
      3. Programming Assignment 5
        Programming Assignment This content is graded
    23. APPROXIMATION ALGORITHMS FOR NP-COMPLETE PROBLEMS [Chapter 34]

      1. Overview
         
      2. A Greedy Knapsack Heuristic (14 min)
         
      3. Analysis of a Greedy Knapsack Heuristic I (7 min)
         
      4. Analysis of a Greedy Knapsack Heuristic II (9 min)
         
      5. A Dynamic Programming Heuristic for Knapsack (11 min)
         
      6. Knapsack via Dynamic Programming, Revisited (10 min)
         
      7. Analysis of Dynamic Programming Heuristic (15 min)
         
    24. LOCAL SEARCH ALGORITHMS [Chapter 35]

      1. The Maximum Cut Problem I (8 min)
         
      2. The Maximum Cut Problem II (9 min)
         
      3. Principles of Local Search I (8 min)
         
      4. Principles of Local Search II (10 min)
         
      5. The 2-SAT Problem (14 min)
         
      6. Random Walks on a Line (16 min)
         
      7. Analysis of Papadimitriou's Algorithm (14 min)
         
    25. THE WIDER WORLD OF ALGORITHMS [Chapter 36]

      1. Stable Matching [Optional] (15 min)
         
      2. Matchings, Flows, and Braess's Paradox [Optional] (13 min)
         
      3. Linear Programming and Beyond [Optional] (11 min)
         
      4. Epilogue (1 min)
         
    26. Homework 6

      1. Problem Set 6
        Problem Set This content is graded
      2. Optional Theory Problems
         
      3. Programming Assignment 6
        Programming Assignment This content is graded
    27. Final Exam

      1. Final Exam
        Final Exam This content is graded
    28. Finishing Up

      1. Post-Course Survey
         
      2. Generate Your Statement of Accomplishment
         

    Course Tools

    Course Handouts









     
    https://github.com/SSQ/Coursera-Stanford-Algorithms-Specialization


    03/14/2019 Last few days:

    https://www.youtube.com/playlist?list=PLXFMmlk03Dt5EMI2s2WQBsLsZl7A5HEK6

     

     

    Minimum spanning tree:

    https://www.cnblogs.com/infroad/p/9245794.html

  • 相关阅读:
    Java实现 蓝桥杯VIP 算法训练 字符串逆序
    Java实现 蓝桥杯VIP 算法训练 字符串逆序
    Java实现 蓝桥杯VIP 算法训练 最长字符串
    Java实现 蓝桥杯VIP 算法训练 最长字符串
    Java实现 蓝桥杯VIP 算法训练 最长字符串
    Java实现 蓝桥杯VIP 算法训练 最长字符串
    Java实现 蓝桥杯VIP 算法训练 最长字符串
    Java实现 蓝桥杯VIP 算法训练 成绩的等级输出
    Java实现 蓝桥杯VIP 算法训练 成绩的等级输出
    Qt 自定义model实现文件系统的文件名排序
  • 原文地址:https://www.cnblogs.com/ecoflex/p/10534706.html
Copyright © 2011-2022 走看看