zoukankan      html  css  js  c++  java
  • [Machine Learning for Trading] {ud501} Lesson 19: 02-09 The Fundamental Law of active portfolio management | Lesson 20: 02-10 Portfolio optimization and the efficient frontier

    this lesson => Buffet said two things

    => (1) investor skill

    => (2) breadth / the number of investments

    Grinold's Fundamental Law

    breadth => more opportunities to applying that skill => eg. how many stocks you invest in

     IC => information coefficient 

    BR => breadth / how many trading opportunities we have

     The Coin Flipping Casino

     

    Which bet is better? 

     

    Coin-Flip Casino: Risk

    Coin-Flip Casino: Reward/Risk 

     

     Coin-Flip Casino: Observations

     

     Coin-Flip Casino: Lessons

    (1) higher alpha generates a higher sharpe ratio 

     (2) more execution opportunities provides a higher sharpe ratio 

     (3) sharpe ratio grows as the square root of breadth 

    Back to the real world 

     

     IR, IC and breadth

     

     The Fundamental Law

     

    skill is harder to be increased than breadth

    Skill => introverted

    Breadth => extroverted 

    Simons vs. Buffet 






     

     What is risk?

     Visualizing return vs risk

     

    Building a portfolio 

    Can we do better? 

     

    Harry discovered the relationship between stocks in terms of covariance 

    resulting of the portfolio is not just a blend of the various risks

     right stocks picking => outliers

     Why covariance matters

    Mean Variance Optimization 

    The efficient frontier 

     

  • 相关阅读:
    超级英雄Hero
    2019 CSP-J 游记(CQ LNBS考场 的退役之战)
    一文梳理Web存储,从cookie,WebStorage到IndexedDB
    一文梳理同源策略与跨域技术
    一文梳理JavaScript中的this
    一文梳理JavaScript 事件循环(Event Loop)
    简单梳理JavaScript垃圾回收机制
    一文梳理JS事件
    src与href
    深入理解CSS定位—浮动模型
  • 原文地址:https://www.cnblogs.com/ecoflex/p/10977417.html
Copyright © 2011-2022 走看看