zoukankan      html  css  js  c++  java
  • 机器学习(十二)—性能优化

    四个方面:

      1、基于数据改善性能

      2、借助算法改善性能

      3、用算法调参改善性能

      4、借助模型融合改善性能

    1、基于数据改善性能

      改变你的训练集数据以及问题定义方式。

    • 获得更多的数据;
    • 数据扩充;
    • 清洁数据:可以纠正或删除一些缺失或错误的观测值,或者在合理范围外的离群点,从而提升数据质量;
    • 重新界定问题:你能否改变你正试图解决的问题类型?重构数据,如回归,二项或多项分类,时间序列,异常检测,评分,推荐等问题类型。
    • 重新缩放数据:归一化和标准化处理可以提升使用加权或距离度量的算法性能。
    • 转化数据:使得数据更服从高斯分布,或进行指数变换可能会暴露出数据更多的特征供算法学习。
    • 特征选择:使用特征选择和衡量特征重要性的方法,可以创造出数据的新视角,供模型算法探索。
    • 特征工程:你能够创造或者增加新的特征?也许有的属性可以分解为多个新的值(比如类别,日期或字符串)或者属性可以聚集起来代表一个事件(如一个计数,二进制标志或统计信息)

    2、借助算法改善性能

    • 重采样方法:使用一种能够最好地利用现有数据的方法和参数设置。K折交叉验证法,利用其中的一折作为验证集可能是最佳操作。
    • 评价指标:选择能够最好地体现问题和专业需求的指标。不要任何问题一上来就看分类准确率。
    • 基线性能:通过随机算法或零规则算法(预测均值或众数)来建立一个基线,并以此对所有算法进行排序。
    • 从文献中偷师学艺:也许你能从算法类型或传统方法的延伸中获取解决自己问题的灵感。
    • 标准参数设置。

    3、用算法调参改善性能

      调整的策略:充分挖掘性能良好的算法的潜力。

    • 诊断:看看损失曲线等;
    • 学习文献:评估标准参数性能是调参的良好开端;

    4、借助模型融合改善性能

      策略:组合多个性能良好的模型预测结果。

    • 混合模型预测结果:也许你可以使用同样的或不同的算法来搭建多个模型。对各自的预测结果取均值,或者众数。
    • 混合数据呈现方式:也许你使用了不同的问题投射方法,来训练性能良好的的算法,那么这些预测结果可以组合起来。

    转载自csdn:https://blog.csdn.net/han_xiaoyang/article/details/53453145

  • 相关阅读:
    java基础学习笔记四(异常)
    关于linux下crontab mysql备份出来的数据为0字节的问题
    转:国内优秀npm镜像推荐及使用
    webpack使用总结~
    php下载远程文件方法~
    腾讯开放平台web第三方登录获取信息类(包含签名)
    windows 平台 php_Imagick 拓展遇到的那些坑!
    转:CentOS/Debian/Ubuntu一键安装LAMP(Apache/MySQL/PHP)环境
    composer 报错:Your requirements could not be resolved to an installable set of packages 解决方法
    Javascript模块化编程(三):require.js的用法
  • 原文地址:https://www.cnblogs.com/eilearn/p/9055611.html
Copyright © 2011-2022 走看看