zoukankan      html  css  js  c++  java
  • 机器学习(十七)— SVD奇异值分解

      奇异值分解(Singular Value Decomposition,以下简称SVD)是在机器学习领域广泛应用的算法,它不光可以用于降维算法中的特征分解,还可以用于推荐系统,以及自然语言处理等领域。是很多机器学习算法的基石。本文就对SVD的原理做一个总结,并讨论在在PCA降维算法中是如何运用运用SVD的。

    1、基本原理

      对于奇异值,它跟我们特征分解中的特征值类似,在奇异值矩阵中也是按照从大到小排列,而且奇异值的减少特别的快,在很多情况下,前10%甚至1%的奇异值的和就占了全部的奇异值之和的99%以上的比例。也就是说,我们也可以用最大的k个的奇异值和对应的左右奇异向量来近似描述矩阵。

      对于这个重要的性质,SVD可以用于PCA降维,来做数据压缩和去噪。也可以用于推荐算法,将用户和喜好对应的矩阵做特征分解,进而得到隐含的用户需求来做推荐。同时也可以用于NLP中的算法,比如潜在语义索引(LSI)

     2、SVD用于PCA

       注意到我们的SVD也可以得到协方差矩阵XTX最大的d个特征向量张成的矩阵,但是SVD有个好处,有一些SVD的实现算法可以不求先求出协方差矩阵XTX,也能求出我们的右奇异矩阵V。也就是说,我们的PCA算法可以不用做特征分解,而是做SVD来完成。这个方法在样本量很大的时候很有效。实际上,scikit-learn的PCA算法的背后真正的实现就是用的SVD,而不是我们我们认为的暴力特征分解。

       左奇异矩阵可以用于行数的压缩。相对的,右奇异矩阵可以用于列数即特征维度的压缩,也就是我们的PCA降维

      在大数据时代,SVD可以并行化,但 SVD的缺点是分解出的矩阵解释性往往不强,有点黑盒子的味道,不过这不影响它的使用。

    参考:http://www.cnblogs.com/pinard/p/6251584.html

  • 相关阅读:
    数据结构 课程安排 (拓扑排序)
    数据结构 通畅工程 (最小生成树)
    01 C#基础
    计算机组成原理——第一章 系统概述
    数据结构——第八章 排序 第九章 文件
    数据结构——第七章 查找
    字符编码(转)
    数据结构——第六章 图
    NodeJS加密算法(转)
    入职总结
  • 原文地址:https://www.cnblogs.com/eilearn/p/9188960.html
Copyright © 2011-2022 走看看