1、31. 下一个排列
实现获取下一个排列的函数,算法需要将给定数字序列重新排列成字典序中下一个更大的排列。
如果不存在下一个更大的排列,则将数字重新排列成最小的排列(即升序排列)。
必须原地修改,只允许使用额外常数空间。
以下是一些例子,输入位于左侧列,其相应输出位于右侧列。1,2,3
→ 1,3,2
3,2,1
→ 1,2,3
1,1,5
→ 1,5,1
这道题让我们求下一个排列顺序,有题目中给的例子可以看出来,如果给定数组是降序,则说明是全排列的最后一种情况,则下一个排列就是最初始情况,可以参见之前的博客 Permutations 全排列。我们再来看下面一个例子,有如下的一个数组
1 2 7 4 3 1
下一个排列为:
1 3 1 2 4 7
那么是如何得到的呢,我们通过观察原数组可以发现,如果从末尾往前看,数字逐渐变大,到了2时才减小的,然后我们再从后往前找第一个比2大的数字,是3,那么我们交换2和3,再把此时3后面的所有数字转置一下即可,步骤如下:
1 2 7 4 3 1
1 2 7 4 3 1
1 3 7 4 2 1
1 3 1 2 4 7
class Solution { public: void nextPermutation(vector<int>& nums) { if(nums.empty()) return ; int n=nums.size(); int i=n-2,j=n-1; while(i>=0 && nums[i]>=nums[i+1])// 从后向前,找到第一个违反升序的数的位置 i--; if(i>=0) { while(j>=0 && nums[j]<=nums[i]) // 从后向前,找到第一个大于该数的值的位置 j--; swap(nums[i],nums[j]); // 交换二者的值 } reverse(nums.begin() + i + 1, nums.end()); //将后面的数重新排序 } };
2、60. 第k个排列
给出集合 [1,2,3,…,n]
,其所有元素共有 n! 种排列。
按大小顺序列出所有排列情况,并一一标记,当 n = 3 时, 所有排列如下:
"123"
"132"
"213"
"231"
"312"
"321"
给定 n 和 k,返回第 k 个排列。
说明:
- 给定 n 的范围是 [1, 9]。
- 给定 k 的范围是[1, n!]。
示例 1:
输入: n = 3, k = 3 输出: "213"
示例 2:
输入: n = 4, k = 9 输出: "2314"
我们可以发现,每一位上1,2,3,4分别都出现了6次,当第一位上的数字确定了,后面三位上每个数字都出现了2次,当第二位也确定了,后面的数字都只出现了1次,当第三位确定了,那么第四位上的数字也只能出现一次,那么下面我们来看k = 17这种情况的每位数字如何确定,由于k = 17是转化为数组下标为16。
class Solution { public: string getPermutation(int n, int k) { string res; string nums = "123456789"; vector<int> f(n, 1); for (int i = 1; i < n; ++i) f[i] = f[i - 1] * i; k--;//因为下标从0开始。 for (int i = n - 1; i >= 0; --i) { int temp = k/f[i]; k = k%f[i]; res.push_back(nums[temp]); nums.erase(temp, 1); } return res; } };