如题:求一个数组的子数组的最大和,要求O(n)时间复杂度。
由于有了O(n)时间复杂度的限制,所以暴力求解的O(n^2)方法肯定不行。再考虑递归求一个数组a[n]的子数组的最大和,可以分解为a[i]子数组的最大和以及a[n-i-1]之间的某种情况
- a[n]的子数组最大和等于a[i]子数组的最大和;
- a[n]的子数组最大和等于a[n-i-1];
- a[n]的子数组最大和跨a[i]和a[n-i-1];
递归实现的时间复杂度为O(nlg(n))。最后考虑时间复杂度为O(n)的动态规划实现。
/** * Created by elvalad on 2014/12/4. * 求一个数组的子数组的最大和 */ import java.util.ArrayList; import java.util.Scanner; public class MaxSubArray { /* 暴力遍历所有子数组的和 */ public static int maxSubArray1(ArrayList<Integer> a) { int sum = 0; int max = Integer.MIN_VALUE; for (int i = 0; i < a.size(); i++) { sum = 0; for (int j = i; j < a.size(); j++) { sum += a.get(j); if (sum > max) { max = sum; } } } return max; } /* 递归实现 */ public static int maxSubArray2(ArrayList<Integer> a, int low, int high) { int max = Integer.MIN_VALUE; int max1 = Integer.MIN_VALUE; int max2 = Integer.MIN_VALUE; int max3 = Integer.MIN_VALUE; int max4 = Integer.MIN_VALUE; int sum = 0; if (low < high) { int mid = low + (high - low)/2; /* 最大子数组为左半部分的子数组最大值 */ max1 = maxSubArray2(a, low, mid); /* 最大子数组为右半部分的子数组最大值 */ max2 = maxSubArray2(a, mid + 1, high); /* 最大子数组跨越mid元素,所以最大值必定为mid向左的最大值加上mid向右的最大值 */ for (int i = mid; i >= low; i--) { sum += a.get(i); if (sum > max3) { max3 = sum; } } sum = 0; for (int i = mid + 1; i <= high; i++) { sum += a.get(i); if (sum > max4) { max4 = sum; } } return Math.max(Math.max(max1, max2), (max3 + max4)); } else { return a.get(0); } } /* 动态规划 */ public static int maxSubArray3(ArrayList<Integer> a) { int max = Integer.MIN_VALUE; int sum = 0; /* 每个元素更新sum的值,当sum<0时清零,同时如果sum>max时更新max */ for (int i = 0; i < a.size(); i++) { sum += a.get(i); if (sum > max) { max = sum; } else if (sum < 0) { sum = 0; } } return max; } public static void main(String[] args) { Scanner scan = new Scanner(System.in); ArrayList<Integer> array = new ArrayList<Integer>(); while (scan.hasNext()) { array.add(scan.nextInt()); } System.out.println("The max sub array is :" + maxSubArray1(array)); System.out.println("The max sub array is :" + maxSubArray2(array, 0, array.size()-1)); System.out.println("The max sub array is :" + maxSubArray3(array)); } }