zoukankan      html  css  js  c++  java
  • 求一个数组中最小的K个数

    方法1:先对数组进行排序,然后遍历前K个数,此时时间复杂度为O(nlgn);

    方法2:维护一个容量为K的最大堆(《算法导论》第6章),然后从第K+1个元素开始遍历,和堆中的最大元素比较,如果大于最大元素则忽略,如果小于最大元素则将次元素送入堆中,并将堆的最大元素删除,调整堆的结构;

    方法3:使用快速排序的原理,选择出数组中第K大的元素,select(a[], k, low, high)

    • 选取数组中a[high]为基准,将数组分割为A1和A2,A1中的元素都比a[high]小,A[2]中的元素都比a[high]大,将a[high]放到合适的位置;
    • 如果k小于a[high]实际位置的index,则递归调用此函数select(a[], k, low, index - 1);
    • 如果k大于a[high]实际位置的index,则递归调用此函数selet(a[], k, index + 1, high);
    • 如果k等于a[hign]实际位置的index,则此时的index位置之前的数即为数组中最小的k个数;
    /**
     * Created by Administrator on 2014/12/8.
     * 输入N个整数,输出最小的K个
     */
    import java.util.ArrayList;
    import java.util.Arrays;
    import java.util.Scanner;
    
    public class MinKArray {
        /* 用二叉树表示一个堆 */
        private class Heap {
            private Node root;
            private class Node {
                int key;
                Node left;
                Node right;
                Node(int key) {
                    this.key = key;
                }
            }
    
            /* 建立最大堆,将元素插入到堆的合适位置 */
            public void put(int key) {
                root = put(root, key);
            }
    
            private Node put(Node x, int key) {
                if (x == null)
                    return new Node(key);
                int cmp = key - x.key;
                if (cmp > 0) {
                    int tmp = x.key;
                    x.key = key;
                    key = tmp;
                    x.right = put(x.right, key);
                } else if (cmp < 0) {
                    x.left = put(x.left, key);
                }
                return x;
            }
    
            public void deleteMax() {
                root = deleteMax(root);
            }
    
            private Node deleteMax(Node x) {
                if (x == null)
                    return null;
                if ((x.left == null) && (x.right != null)) {
                    int tmp = x.key;
                    x.right.key = x.key;
                    x.key = tmp;
                    x.right = deleteMax(x.right);
                } else if ((x.right == null) && (x.left != null)) {
                    int tmp = x.key;
                    x.left.key = x.key;
                    x.key = tmp;
                    x.left = deleteMax(x.left);
                } else if ((x.left == null) && (x.right == null)) {
                    x = null;
                } else {
                    int cmp = x.left.key - x.right.key;
                    if (cmp >= 0) {
                        int tmp = x.key;
                        x.key = x.left.key;
                        x.left.key = tmp;
                        x.left = deleteMax(x.left);
                    } else {
                        int tmp = x.key;
                        x.key = x.right.key;
                        x.right.key = tmp;
                        x.right = deleteMax(x.right);
                    }
                }
                return x;
            }
    
            public void printHeap(Node x) {
                if (x == null)
                    return;
                System.out.print(x.key + " ");
                printHeap(x.left);
                printHeap(x.right);
            }
        }
    
        /* 使用一般的排序算法,然后顺序输出前K个元素 */
        public int[] minKArray1(int[] a, int k) {
            Arrays.sort(a);
            for (int i = 0; i < k; i++) {
                System.out.print(a[i] + " ");
            }
            return Arrays.copyOfRange(a, 0, k);
        }
    
        /* 求出数组中第K大的元素,然后顺序遍历所有元素 */
        public int[] minKArray2(int[] a, int k) {
            minKArray2(a, k, 0, a.length - 1);
            return a;
        }
    
        /* 利用快速排序的原理,以a[high]为基准,将a[high]放到相应的位置
        *  左边的都比它小,右边的都比它大 */
        private void minKArray2(int[] a, int k, int low, int high) {
            if (low <= high) {
                int l = low, r = high - 1;
                int x = a[high];
                for (int i = low; i < high; i++) {
                    if (l <= r) {
                        if (a[l] > x) {
                            int tmp = a[r];
                            a[r] = a[l];
                            a[l] = tmp;
                            r--;
                        }
                        if (a[l] <= x) {
                            l++;
                        }
                    }
                }
                int tmp = a[l];
                a[l] = a[high];
                a[high] = tmp;
    
                if (l < k) {
                    minKArray2(a, k, l + 1, high);
                } else if (l > k) {
                    minKArray2(a, k, low, l - 1);
                } else {
                    for (int i = 0; i < k; i++) {
                        System.out.print(a[i] + " ");
                    }
                }
            }
        }
    
        /* 维护一个容量为K的最大堆,《算法导论》第6章堆排序 */
        public int[] minKArray3(int[] a, int k) {
            Heap h = new Heap();
            for (int i = 0; i < k; i++) {
                h.put(a[i]);
            }
            for (int i = k; i < a.length; i++) {
                if (a[i] >= h.root.key) {
                    continue;
                } else {
                    h.put(a[i]);
                    h.deleteMax();
                }
            }
            h.printHeap(h.root);
            return a;
        }
    
        public static void main(String[] args) {
            Scanner scan = new Scanner(System.in);
            ArrayList<Integer> array = new ArrayList<Integer>();
            while (scan.hasNext()) {
                array.add(scan.nextInt());
            }
            int[] a = new int[array.size()];
            for (int i = 0; i < a.length; i++) {
                a[i] = array.get(i);
            }
            MinKArray mka = new MinKArray();
            mka.minKArray1(a, 8);
            System.out.println();
            mka.minKArray2(a, 8);
            System.out.println();
            mka.minKArray3(a, 8);
            System.out.println();
        }
    }
    ------------------------------- 问道,修仙 -------------------------------
  • 相关阅读:
    shallow update not allowed
    GH001 on github
    Castle动态代理拦截
    Spring Boot : Whitelabel Error Page解决方案
    Springboot 之 Hibernate自动建表(Mysql)
    hibernate.hbm2ddl.auto配置详解
    【Spring boot】第一个项目 Springboot + mysql + hibernate
    【持久化框架】Mybatis与Hibernate的详细对比
    Hibernate基本原理(一)
    Hibernate各种主键生成策略与配置详解
  • 原文地址:https://www.cnblogs.com/elvalad/p/4152234.html
Copyright © 2011-2022 走看看