方法1:先对数组进行排序,然后遍历前K个数,此时时间复杂度为O(nlgn);
方法2:维护一个容量为K的最大堆(《算法导论》第6章),然后从第K+1个元素开始遍历,和堆中的最大元素比较,如果大于最大元素则忽略,如果小于最大元素则将次元素送入堆中,并将堆的最大元素删除,调整堆的结构;
方法3:使用快速排序的原理,选择出数组中第K大的元素,select(a[], k, low, high)
- 选取数组中a[high]为基准,将数组分割为A1和A2,A1中的元素都比a[high]小,A[2]中的元素都比a[high]大,将a[high]放到合适的位置;
- 如果k小于a[high]实际位置的index,则递归调用此函数select(a[], k, low, index - 1);
- 如果k大于a[high]实际位置的index,则递归调用此函数selet(a[], k, index + 1, high);
- 如果k等于a[hign]实际位置的index,则此时的index位置之前的数即为数组中最小的k个数;
/** * Created by Administrator on 2014/12/8. * 输入N个整数,输出最小的K个 */ import java.util.ArrayList; import java.util.Arrays; import java.util.Scanner; public class MinKArray { /* 用二叉树表示一个堆 */ private class Heap { private Node root; private class Node { int key; Node left; Node right; Node(int key) { this.key = key; } } /* 建立最大堆,将元素插入到堆的合适位置 */ public void put(int key) { root = put(root, key); } private Node put(Node x, int key) { if (x == null) return new Node(key); int cmp = key - x.key; if (cmp > 0) { int tmp = x.key; x.key = key; key = tmp; x.right = put(x.right, key); } else if (cmp < 0) { x.left = put(x.left, key); } return x; } public void deleteMax() { root = deleteMax(root); } private Node deleteMax(Node x) { if (x == null) return null; if ((x.left == null) && (x.right != null)) { int tmp = x.key; x.right.key = x.key; x.key = tmp; x.right = deleteMax(x.right); } else if ((x.right == null) && (x.left != null)) { int tmp = x.key; x.left.key = x.key; x.key = tmp; x.left = deleteMax(x.left); } else if ((x.left == null) && (x.right == null)) { x = null; } else { int cmp = x.left.key - x.right.key; if (cmp >= 0) { int tmp = x.key; x.key = x.left.key; x.left.key = tmp; x.left = deleteMax(x.left); } else { int tmp = x.key; x.key = x.right.key; x.right.key = tmp; x.right = deleteMax(x.right); } } return x; } public void printHeap(Node x) { if (x == null) return; System.out.print(x.key + " "); printHeap(x.left); printHeap(x.right); } } /* 使用一般的排序算法,然后顺序输出前K个元素 */ public int[] minKArray1(int[] a, int k) { Arrays.sort(a); for (int i = 0; i < k; i++) { System.out.print(a[i] + " "); } return Arrays.copyOfRange(a, 0, k); } /* 求出数组中第K大的元素,然后顺序遍历所有元素 */ public int[] minKArray2(int[] a, int k) { minKArray2(a, k, 0, a.length - 1); return a; } /* 利用快速排序的原理,以a[high]为基准,将a[high]放到相应的位置 * 左边的都比它小,右边的都比它大 */ private void minKArray2(int[] a, int k, int low, int high) { if (low <= high) { int l = low, r = high - 1; int x = a[high]; for (int i = low; i < high; i++) { if (l <= r) { if (a[l] > x) { int tmp = a[r]; a[r] = a[l]; a[l] = tmp; r--; } if (a[l] <= x) { l++; } } } int tmp = a[l]; a[l] = a[high]; a[high] = tmp; if (l < k) { minKArray2(a, k, l + 1, high); } else if (l > k) { minKArray2(a, k, low, l - 1); } else { for (int i = 0; i < k; i++) { System.out.print(a[i] + " "); } } } } /* 维护一个容量为K的最大堆,《算法导论》第6章堆排序 */ public int[] minKArray3(int[] a, int k) { Heap h = new Heap(); for (int i = 0; i < k; i++) { h.put(a[i]); } for (int i = k; i < a.length; i++) { if (a[i] >= h.root.key) { continue; } else { h.put(a[i]); h.deleteMax(); } } h.printHeap(h.root); return a; } public static void main(String[] args) { Scanner scan = new Scanner(System.in); ArrayList<Integer> array = new ArrayList<Integer>(); while (scan.hasNext()) { array.add(scan.nextInt()); } int[] a = new int[array.size()]; for (int i = 0; i < a.length; i++) { a[i] = array.get(i); } MinKArray mka = new MinKArray(); mka.minKArray1(a, 8); System.out.println(); mka.minKArray2(a, 8); System.out.println(); mka.minKArray3(a, 8); System.out.println(); } }