zoukankan      html  css  js  c++  java
  • python用pd.read_csv()方法来读取csv文件

    import pandas as pd
     print("************取消第一行作为表头*************")
    data2 = pd.read_csv('rating.csv',header=None)
    print("************为各个字段取名**************")
    data3 = pd.read_csv('rating.csv',names=['user_id','book_id','rating'])
    print("***********将某一字段设为索引***************")
    data3 = pd.read_csv('rating.csv',
        names=['user_id','book_id','rating'],
        index_col = "user_id")
    print("************用sep参数设置分隔符**************")
    data4 = pd.read_csv('rating.csv',
        names=['user_id','book_id','rating'],
        sep=',')
    print("************自动补全缺失数据为NaN**************")
    data5 = pd.read_csv('data.csv',header=None)
    

    查看pandas官方文档发现,read_csv读取时会自动识别表头,数据有表头时不能设置 header 为空(默认读取第一行,即 header=0);数据无表头时,若不设置header,第一行数据会被视为表头,应传入names参数设置表头名称或设置 header=None。 

    read_csv(filepath_or_buffer: Union[ForwardRef('PathLike[str]'), str, IO[~T], io.RawIOBase, io.BufferedIOBase, io.TextIOBase, _io.TextIOWrapper, mmap.mmap], sep=<object object at 0x000001BBDFFF5710>, delimiter=None, header='infer', names=None, index_col=None, usecols=None, squeeze=False, prefix=None, mangle_dupe_cols=True, dtype=None, engine=None, converters=None, true_values=None, false_values=None, skipinitialspace=False, skiprows=None, skipfooter=0, nrows=None, na_values=None, keep_default_na=True, na_filter=True, verbose=False, skip_blank_lines=True, parse_dates=False, infer_datetime_format=False, keep_date_col=False, date_parser=None, dayfirst=False, cache_dates=True, iterator=False, chunksize=None, compression='infer', thousands=None, decimal: str = '.', lineterminator=None, quotechar='"', quoting=0, doublequote=True, escapechar=None, comment=None, encoding=None, dialect=None, error_bad_lines=True, warn_bad_lines=True, delim_whitespace=False, low_memory=True, memory_map=False, float_precision=None, storage_options: Union[Dict[str, Any], NoneType] = None)
        Read a comma-separated values (csv) file into DataFrame.
        
        Also supports optionally iterating or breaking of the file
        into chunks.
        
        Additional help can be found in the online docs for
        `IO Tools <https://pandas.pydata.org/pandas-docs/stable/user_guide/io.html>`_.
        
        Parameters
        ----------
        filepath_or_buffer : str, path object or file-like object
            Any valid string path is acceptable. The string could be a URL. Valid
            URL schemes include http, ftp, s3, gs, and file. For file URLs, a host is
            expected. A local file could be: file://localhost/path/to/table.csv.
        
            If you want to pass in a path object, pandas accepts any ``os.PathLike``.
        
            By file-like object, we refer to objects with a ``read()`` method, such as
            a file handle (e.g. via builtin ``open`` function) or ``StringIO``.
        sep : str, default ','
            Delimiter to use. If sep is None, the C engine cannot automatically detect
            the separator, but the Python parsing engine can, meaning the latter will
            be used and automatically detect the separator by Python's builtin sniffer
            tool, ``csv.Sniffer``. In addition, separators longer than 1 character and
            different from ``'s+'`` will be interpreted as regular expressions and
            will also force the use of the Python parsing engine. Note that regex
            delimiters are prone to ignoring quoted data. Regex example: ``' '``.
        delimiter : str, default ``None``
            Alias for sep.
        header : int, list of int, default 'infer'
            Row number(s) to use as the column names, and the start of the
            data.  Default behavior is to infer the column names: if no names
            are passed the behavior is identical to ``header=0`` and column
            names are inferred from the first line of the file, if column
            names are passed explicitly then the behavior is identical to
            ``header=None``. Explicitly pass ``header=0`` to be able to
            replace existing names. The header can be a list of integers that
            specify row locations for a multi-index on the columns
            e.g. [0,1,3]. Intervening rows that are not specified will be
            skipped (e.g. 2 in this example is skipped). Note that this
            parameter ignores commented lines and empty lines if
            ``skip_blank_lines=True``, so ``header=0`` denotes the first line of
            data rather than the first line of the file.
        names : array-like, optional
            List of column names to use. If the file contains a header row,
            then you should explicitly pass ``header=0`` to override the column names.
            Duplicates in this list are not allowed.
        index_col : int, str, sequence of int / str, or False, default ``None``
          Column(s) to use as the row labels of the ``DataFrame``, either given as
          string name or column index. If a sequence of int / str is given, a
          MultiIndex is used.
        
          Note: ``index_col=False`` can be used to force pandas to *not* use the first
          column as the index, e.g. when you have a malformed file with delimiters at
          the end of each line.
        usecols : list-like or callable, optional
            Return a subset of the columns. If list-like, all elements must either
            be positional (i.e. integer indices into the document columns) or strings
            that correspond to column names provided either by the user in `names` or
            inferred from the document header row(s). For example, a valid list-like
            `usecols` parameter would be ``[0, 1, 2]`` or ``['foo', 'bar', 'baz']``.
            Element order is ignored, so ``usecols=[0, 1]`` is the same as ``[1, 0]``.
            To instantiate a DataFrame from ``data`` with element order preserved use
            ``pd.read_csv(data, usecols=['foo', 'bar'])[['foo', 'bar']]`` for columns
            in ``['foo', 'bar']`` order or
            ``pd.read_csv(data, usecols=['foo', 'bar'])[['bar', 'foo']]``
            for ``['bar', 'foo']`` order.
        
            If callable, the callable function will be evaluated against the column
            names, returning names where the callable function evaluates to True. An
            example of a valid callable argument would be ``lambda x: x.upper() in
            ['AAA', 'BBB', 'DDD']``. Using this parameter results in much faster
            parsing time and lower memory usage.
        squeeze : bool, default False
            If the parsed data only contains one column then return a Series.
        prefix : str, optional
            Prefix to add to column numbers when no header, e.g. 'X' for X0, X1, ...
        mangle_dupe_cols : bool, default True
            Duplicate columns will be specified as 'X', 'X.1', ...'X.N', rather than
            'X'...'X'. Passing in False will cause data to be overwritten if there
            are duplicate names in the columns.
        dtype : Type name or dict of column -> type, optional
            Data type for data or columns. E.g. {'a': np.float64, 'b': np.int32,
            'c': 'Int64'}
            Use `str` or `object` together with suitable `na_values` settings
            to preserve and not interpret dtype.
            If converters are specified, they will be applied INSTEAD
            of dtype conversion.
        engine : {'c', 'python'}, optional
            Parser engine to use. The C engine is faster while the python engine is
            currently more feature-complete.
        converters : dict, optional
            Dict of functions for converting values in certain columns. Keys can either
            be integers or column labels.
        true_values : list, optional
            Values to consider as True.
        false_values : list, optional
            Values to consider as False.
        skipinitialspace : bool, default False
            Skip spaces after delimiter.
        skiprows : list-like, int or callable, optional
            Line numbers to skip (0-indexed) or number of lines to skip (int)
            at the start of the file.
        
            If callable, the callable function will be evaluated against the row
            indices, returning True if the row should be skipped and False otherwise.
            An example of a valid callable argument would be ``lambda x: x in [0, 2]``.
        skipfooter : int, default 0
            Number of lines at bottom of file to skip (Unsupported with engine='c').
        nrows : int, optional
            Number of rows of file to read. Useful for reading pieces of large files.
        na_values : scalar, str, list-like, or dict, optional
            Additional strings to recognize as NA/NaN. If dict passed, specific
            per-column NA values.  By default the following values are interpreted as
            NaN: '', '#N/A', '#N/A N/A', '#NA', '-1.#IND', '-1.#QNAN', '-NaN', '-nan',
            '1.#IND', '1.#QNAN', '<NA>', 'N/A', 'NA', 'NULL', 'NaN', 'n/a',
            'nan', 'null'.
        keep_default_na : bool, default True
            Whether or not to include the default NaN values when parsing the data.
            Depending on whether `na_values` is passed in, the behavior is as follows:
        
            * If `keep_default_na` is True, and `na_values` are specified, `na_values`
              is appended to the default NaN values used for parsing.
            * If `keep_default_na` is True, and `na_values` are not specified, only
              the default NaN values are used for parsing.
            * If `keep_default_na` is False, and `na_values` are specified, only
              the NaN values specified `na_values` are used for parsing.
            * If `keep_default_na` is False, and `na_values` are not specified, no
              strings will be parsed as NaN.
        
            Note that if `na_filter` is passed in as False, the `keep_default_na` and
            `na_values` parameters will be ignored.
        na_filter : bool, default True
            Detect missing value markers (empty strings and the value of na_values). In
            data without any NAs, passing na_filter=False can improve the performance
            of reading a large file.
        verbose : bool, default False
            Indicate number of NA values placed in non-numeric columns.
        skip_blank_lines : bool, default True
            If True, skip over blank lines rather than interpreting as NaN values.
        parse_dates : bool or list of int or names or list of lists or dict, default False
            The behavior is as follows:
        
            * boolean. If True -> try parsing the index.
            * list of int or names. e.g. If [1, 2, 3] -> try parsing columns 1, 2, 3
              each as a separate date column.
            * list of lists. e.g.  If [[1, 3]] -> combine columns 1 and 3 and parse as
              a single date column.
            * dict, e.g. {'foo' : [1, 3]} -> parse columns 1, 3 as date and call
              result 'foo'
        
            If a column or index cannot be represented as an array of datetimes,
            say because of an unparsable value or a mixture of timezones, the column
            or index will be returned unaltered as an object data type. For
            non-standard datetime parsing, use ``pd.to_datetime`` after
            ``pd.read_csv``. To parse an index or column with a mixture of timezones,
            specify ``date_parser`` to be a partially-applied
            :func:`pandas.to_datetime` with ``utc=True``. See
            :ref:`io.csv.mixed_timezones` for more.
        
            Note: A fast-path exists for iso8601-formatted dates.
        infer_datetime_format : bool, default False
            If True and `parse_dates` is enabled, pandas will attempt to infer the
            format of the datetime strings in the columns, and if it can be inferred,
            switch to a faster method of parsing them. In some cases this can increase
            the parsing speed by 5-10x.
        keep_date_col : bool, default False
            If True and `parse_dates` specifies combining multiple columns then
            keep the original columns.
        date_parser : function, optional
            Function to use for converting a sequence of string columns to an array of
            datetime instances. The default uses ``dateutil.parser.parser`` to do the
            conversion. Pandas will try to call `date_parser` in three different ways,
            advancing to the next if an exception occurs: 1) Pass one or more arrays
            (as defined by `parse_dates`) as arguments; 2) concatenate (row-wise) the
            string values from the columns defined by `parse_dates` into a single array
            and pass that; and 3) call `date_parser` once for each row using one or
            more strings (corresponding to the columns defined by `parse_dates`) as
            arguments.
        dayfirst : bool, default False
            DD/MM format dates, international and European format.
        cache_dates : bool, default True
            If True, use a cache of unique, converted dates to apply the datetime
            conversion. May produce significant speed-up when parsing duplicate
            date strings, especially ones with timezone offsets.
        
            .. versionadded:: 0.25.0
        iterator : bool, default False
            Return TextFileReader object for iteration or getting chunks with
            ``get_chunk()``.
        
            .. versionchanged:: 1.2
        
               ``TextFileReader`` is a context manager.
        chunksize : int, optional
            Return TextFileReader object for iteration.
            See the `IO Tools docs
            <https://pandas.pydata.org/pandas-docs/stable/io.html#io-chunking>`_
            for more information on ``iterator`` and ``chunksize``.
        
            .. versionchanged:: 1.2
        
               ``TextFileReader`` is a context manager.
        compression : {'infer', 'gzip', 'bz2', 'zip', 'xz', None}, default 'infer'
            For on-the-fly decompression of on-disk data. If 'infer' and
            `filepath_or_buffer` is path-like, then detect compression from the
            following extensions: '.gz', '.bz2', '.zip', or '.xz' (otherwise no
            decompression). If using 'zip', the ZIP file must contain only one data
            file to be read in. Set to None for no decompression.
        thousands : str, optional
            Thousands separator.
        decimal : str, default '.'
            Character to recognize as decimal point (e.g. use ',' for European data).
        lineterminator : str (length 1), optional
            Character to break file into lines. Only valid with C parser.
        quotechar : str (length 1), optional
            The character used to denote the start and end of a quoted item. Quoted
            items can include the delimiter and it will be ignored.
        quoting : int or csv.QUOTE_* instance, default 0
            Control field quoting behavior per ``csv.QUOTE_*`` constants. Use one of
            QUOTE_MINIMAL (0), QUOTE_ALL (1), QUOTE_NONNUMERIC (2) or QUOTE_NONE (3).
        doublequote : bool, default ``True``
           When quotechar is specified and quoting is not ``QUOTE_NONE``, indicate
           whether or not to interpret two consecutive quotechar elements INSIDE a
           field as a single ``quotechar`` element.
        escapechar : str (length 1), optional
            One-character string used to escape other characters.
        comment : str, optional
            Indicates remainder of line should not be parsed. If found at the beginning
            of a line, the line will be ignored altogether. This parameter must be a
            single character. Like empty lines (as long as ``skip_blank_lines=True``),
            fully commented lines are ignored by the parameter `header` but not by
            `skiprows`. For example, if ``comment='#'``, parsing
            ``#empty a,b,c 1,2,3`` with ``header=0`` will result in 'a,b,c' being
            treated as the header.
        encoding : str, optional
            Encoding to use for UTF when reading/writing (ex. 'utf-8'). `List of Python
            standard encodings
            <https://docs.python.org/3/library/codecs.html#standard-encodings>`_ .
        dialect : str or csv.Dialect, optional
            If provided, this parameter will override values (default or not) for the
            following parameters: `delimiter`, `doublequote`, `escapechar`,
            `skipinitialspace`, `quotechar`, and `quoting`. If it is necessary to
            override values, a ParserWarning will be issued. See csv.Dialect
            documentation for more details.
        error_bad_lines : bool, default True
            Lines with too many fields (e.g. a csv line with too many commas) will by
            default cause an exception to be raised, and no DataFrame will be returned.
            If False, then these "bad lines" will dropped from the DataFrame that is
            returned.
        warn_bad_lines : bool, default True
            If error_bad_lines is False, and warn_bad_lines is True, a warning for each
            "bad line" will be output.
        delim_whitespace : bool, default False
            Specifies whether or not whitespace (e.g. ``' '`` or ``'    '``) will be
            used as the sep. Equivalent to setting ``sep='s+'``. If this option
            is set to True, nothing should be passed in for the ``delimiter``
            parameter.
        low_memory : bool, default True
            Internally process the file in chunks, resulting in lower memory use
            while parsing, but possibly mixed type inference.  To ensure no mixed
            types either set False, or specify the type with the `dtype` parameter.
            Note that the entire file is read into a single DataFrame regardless,
            use the `chunksize` or `iterator` parameter to return the data in chunks.
            (Only valid with C parser).
        memory_map : bool, default False
            If a filepath is provided for `filepath_or_buffer`, map the file object
            directly onto memory and access the data directly from there. Using this
            option can improve performance because there is no longer any I/O overhead.
        float_precision : str, optional
            Specifies which converter the C engine should use for floating-point
            values. The options are ``None`` or 'high' for the ordinary converter,
            'legacy' for the original lower precision pandas converter, and
            'round_trip' for the round-trip converter.
        
            .. versionchanged:: 1.2
        
        storage_options : dict, optional
            Extra options that make sense for a particular storage connection, e.g.
            host, port, username, password, etc., if using a URL that will
            be parsed by ``fsspec``, e.g., starting "s3://", "gcs://". An error
            will be raised if providing this argument with a non-fsspec URL.
            See the fsspec and backend storage implementation docs for the set of
            allowed keys and values.
        
            .. versionadded:: 1.2
        
        Returns
        -------
        DataFrame or TextParser
            A comma-separated values (csv) file is returned as two-dimensional
            data structure with labeled axes.
       

    REF

    https://blog.csdn.net/weixin_41855010/article/details/104287348

  • 相关阅读:
    Leetcode: Palindrome Permutation
    Leetcode: Ugly Number
    Leetcode: Ugly Number II
    Leetcode: Single Number III
    Leetcode: 3Sum Smaller
    Leetcode: Factor Combinations
    Leetcode: Different Ways to Add Parentheses
    Leetcode: Add Digits
    GigE IP地址配置
    Ubuntu 关闭触摸板
  • 原文地址:https://www.cnblogs.com/emanlee/p/14380950.html
Copyright © 2011-2022 走看看