zoukankan      html  css  js  c++  java
  • linux list

    一篇介绍链表不错的文章:

    1. 玩转C链表

    2. openwrt使用list

    3. 深入分析 Linux 内核链表 https://www.ibm.com/developerworks/cn/linux/kernel/l-chain/

    include/linux/list.h

    双向链表--双指针(无头链表,需外部指定头部

    /*
     * Simple doubly linked list implementation.
     *
     * Some of the internal functions ("__xxx") are useful when
     * manipulating whole lists rather than single entries, as
     * sometimes we already know the next/prev entries and we can
     * generate better code by using them directly rather than
     * using the generic single-entry routines.
     */
    struct list_head {
        struct list_head *next, *prev;
    };
    
    #define LIST_HEAD_INIT(name) { &(name), &(name) }
    
    #define LIST_HEAD(name) 
        struct list_head name = LIST_HEAD_INIT(name)
    
    static inline void INIT_LIST_HEAD(struct list_head *list)
    {
        list->next = list;
        list->prev = list;
    }
    #ifndef CONFIG_DEBUG_LIST
    static inline void __list_add(struct list_head *new,
                      struct list_head *prev,
                      struct list_head *next)
    {
        next->prev = new;
        new->next = next;
        new->prev = prev;
        prev->next = new;
    }
    #else
    extern void __list_add(struct list_head *new,
                      struct list_head *prev,
                      struct list_head *next);
    #endif
    
    /**
     * list_add - add a new entry
     * @new: new entry to be added
     * @head: list head to add it after
     *
     * Insert a new entry after the specified head.
     * This is good for implementing stacks.
     */
    static inline void list_add(struct list_head *new, struct list_head *head)
    {
        __list_add(new, head, head->next);
    }
    /**
     * list_add_tail - add a new entry
     * @new: new entry to be added
     * @head: list head to add it before
     *
     * Insert a new entry before the specified head.
     * This is useful for implementing queues.
     */
    static inline void list_add_tail(struct list_head *new, struct list_head *head)
    {
        __list_add(new, head->prev, head);
    }
    static inline void __list_del(struct list_head * prev, struct list_head * next)
    {
        next->prev = prev;
        prev->next = next;
    }
    
    被剔除下来的list,prev、next指针分别被设为LIST_POSITION2和LIST_POSITION1两个特殊值,这样设置是为了保证不在链表中的节点项不可访问--对LIST_POSITION1和LIST_POSITION2的访问都将引起页故障。
    与之相对应,list_del_init()函数将节点从链表中解下来之后,调用LIST_INIT_HEAD()将节点置为空链状态。
    /** * list_del - deletes entry from list. * @entry: the element to delete from the list. * Note: list_empty() on entry does not return true after this, the entry is * in an undefined state. */ #ifndef CONFIG_DEBUG_LIST static inline void list_del(struct list_head *entry) { __list_del(entry->prev, entry->next); entry->next = LIST_POISON1; entry->prev = LIST_POISON2; } #else extern void list_del(struct list_head *entry); #endif
    static inline void list_replace(struct list_head *old,
                    struct list_head *new)
    {
        new->next = old->next;
        new->next->prev = new;
        new->prev = old->prev;
        new->prev->next = new;
    }
    
    static inline void list_replace_init(struct list_head *old,
                        struct list_head *new)
    {
        list_replace(old, new);
        INIT_LIST_HEAD(old);
    }
    static inline void list_del_init(struct list_head *entry)
    {
        __list_del(entry->prev, entry->next);
        INIT_LIST_HEAD(entry);
    }
    static inline void list_move(struct list_head *list, struct list_head *head)
    {
        __list_del(list->prev, list->next);
        list_add(list, head);
    }
    static inline void list_move_tail(struct list_head *list,
                      struct list_head *head)
    {
        __list_del(list->prev, list->next);
        list_add_tail(list, head);
    }
    static inline int list_is_last(const struct list_head *list,
                    const struct list_head *head)
    {
        return list->next == head;
    }
    
    /**
     * list_empty - tests whether a list is empty
     * @head: the list to test.
     */
    static inline int list_empty(const struct list_head *head)
    {
        return head->next == head;
    }
    static inline void __list_splice(const struct list_head *list,
                     struct list_head *prev,
                     struct list_head *next)
    {
        struct list_head *first = list->next;
        struct list_head *last = list->prev;
    
        first->prev = prev;
        prev->next = first;
    
        last->next = next;
        next->prev = last;
    }
    
    /**
     * list_splice - join two lists, this is designed for stacks
     * @list: the new list to add.
     * @head: the place to add it in the first list.
     */
    static inline void list_splice(const struct list_head *list,
                    struct list_head *head)
    {
        if (!list_empty(list))
            __list_splice(list, head, head->next);
    }
    static inline void list_splice_tail(struct list_head *list,
                    struct list_head *head)
    {
        if (!list_empty(list))
            __list_splice(list, head->prev, head);
    }
    static inline void list_splice_init(struct list_head *list,
                        struct list_head *head)
    {
        if (!list_empty(list)) {
            __list_splice(list, head, head->next);
            INIT_LIST_HEAD(list);
        }
    }
    当list1被挂接到list2之后,作为原表头指针的list1的next、prev仍然指向原来的节点,为了避免引起混乱,Linux提供了一个list_splice_init(),在将list合并到head链表的基础上,调用INIT_LIST_HEAD(list)将list设置为空链。
    /** * list_splice_tail_init - join two lists and reinitialise the emptied list * @list: the new list to add. * @head: the place to add it in the first list. * * Each of the lists is a queue. * The list at @list is reinitialised */ static inline void list_splice_tail_init(struct list_head *list, struct list_head *head) { if (!list_empty(list)) { __list_splice(list, head->prev, head); INIT_LIST_HEAD(list); } }

    -------------------------------------------------------------------------------------------------------------------

    Linux链表中仅保存了数据项结构中list_head成员变量的地址,那么我们如何通过这个list_head成员访问到作为它的所有者的节点数据呢?
    Linux为此提供了一个list_entry(ptr,type,member)宏,其中ptr是指向该数据中list_head成员的指针,也就是存储在链表中的地址值,type是数据项的类型,member则是数据项类型定义中list_head成员的变量名。
    /*
    * * list_entry - get the struct for this entry * @ptr: the &struct list_head pointer. * @type: the type of the struct this is embedded in. * @member: the name of the list_struct within the struct. */ #define list_entry(ptr, type, member) container_of(ptr, type, member)
    /**
     * list_first_entry - get the first element from a list
     * @ptr:    the list head to take the element from.
     * @type:   the type of the struct this is embedded in.
     * @member: the name of the list_struct within the struct.
     *
     * Note, that list is expected to be not empty.
     */
    #define list_first_entry(ptr, type, member) 
        list_entry((ptr)->next, type, member)
    /**
     * list_for_each    -   iterate over a list
     * @pos:    the &struct list_head to use as a loop cursor.
     * @head:   the head for your list.
     */
    #define list_for_each(pos, head) 
        for (pos = (head)->next; prefetch(pos->next), pos != (head); 
                pos = pos->next)
    /**
     * __list_for_each  -   iterate over a list
     * @pos:    the &struct list_head to use as a loop cursor.
     * @head:   the head for your list.
     *
     * This variant differs from list_for_each() in that it's the
     * simplest possible list iteration code, no prefetching is done.
     * Use this for code that knows the list to be very short (empty
     * or 1 entry) most of the time.
     */
    #define __list_for_each(pos, head) 
        for (pos = (head)->next; pos != (head); pos = pos->next)
    
    /**
     * list_for_each_prev   -   iterate over a list backwards
     * @pos:    the &struct list_head to use as a loop cursor.
     * @head:   the head for your list.
     */
    #define list_for_each_prev(pos, head) 
        for (pos = (head)->prev; prefetch(pos->prev), pos != (head); 
                pos = pos->prev)
    /**
     * list_for_each_safe - iterate over a list safe against removal of list entry
     * @pos:    the &struct list_head to use as a loop cursor.
     * @n:      another &struct list_head to use as temporary storage
     * @head:   the head for your list.
     */
    #define list_for_each_safe(pos, n, head) 
        for (pos = (head)->next, n = pos->next; pos != (head); 
            pos = n, n = pos->next)
    
    /**
     * list_for_each_prev_safe - iterate over a list backwards safe against removal of list entry
     * @pos:    the &struct list_head to use as a loop cursor.
     * @n:      another &struct list_head to use as temporary storage
     * @head:   the head for your list.
     */
    #define list_for_each_prev_safe(pos, n, head) 
        for (pos = (head)->prev, n = pos->prev; 
             prefetch(pos->prev), pos != (head); 
             pos = n, n = pos->prev)
    /**
     * list_for_each_entry  -   iterate over list of given type
     * @pos:    the type * to use as a loop cursor.
     * @head:   the head for your list.
     * @member: the name of the list_struct within the struct.
     */
    #define list_for_each_entry(pos, head, member)              
        for (pos = list_entry((head)->next, typeof(*pos), member);  
             prefetch(pos->member.next), &pos->member != (head);    
             pos = list_entry(pos->member.next, typeof(*pos), member))
    /**
     * list_for_each_entry_reverse - iterate backwards over list of given type.
     * @pos:    the type * to use as a loop cursor.
     * @head:   the head for your list.
     * @member: the name of the list_struct within the struct.
     */
    #define list_for_each_entry_reverse(pos, head, member)          
        for (pos = list_entry((head)->prev, typeof(*pos), member);  
             prefetch(pos->member.prev), &pos->member != (head);    
             pos = list_entry(pos->member.prev, typeof(*pos), member))
    /**
     * list_prepare_entry - prepare a pos entry for use in list_for_each_entry_continue()
     * @pos:    the type * to use as a start point
     * @head:   the head of the list
     * @member: the name of the list_struct within the struct.
     *
     * Prepares a pos entry for use as a start point in list_for_each_entry_continue().
     */
    #define list_prepare_entry(pos, head, member) 
        ((pos) ? : list_entry(head, typeof(*pos), member))
    
    /**
     * list_for_each_entry_continue - continue iteration over list of given type
     * @pos:    the type * to use as a loop cursor.
     * @head:   the head for your list.
     * @member: the name of the list_struct within the struct.
     *
     * Continue to iterate over list of given type, continuing after
     * the current position.
     */
    #define list_for_each_entry_continue(pos, head, member)         
        for (pos = list_entry(pos->member.next, typeof(*pos), member);  
             prefetch(pos->member.next), &pos->member != (head);    
             pos = list_entry(pos->member.next, typeof(*pos), member))
    /**
     * list_for_each_entry_continue_reverse - iterate backwards from the given point
     * @pos:    the type * to use as a loop cursor.
     * @head:   the head for your list.
     * @member: the name of the list_struct within the struct.
     *
     * Start to iterate over list of given type backwards, continuing after
     * the current position.
     */
    #define list_for_each_entry_continue_reverse(pos, head, member)     
        for (pos = list_entry(pos->member.prev, typeof(*pos), member);  
             prefetch(pos->member.prev), &pos->member != (head);    
             pos = list_entry(pos->member.prev, typeof(*pos), member))
    
    /**
     * list_for_each_entry_from - iterate over list of given type from the current point
     * @pos:    the type * to use as a loop cursor.
     * @head:   the head for your list.
     * @member: the name of the list_struct within the struct.
     *
     * Iterate over list of given type, continuing from current position.
     */
    #define list_for_each_entry_from(pos, head, member)             
        for (; prefetch(pos->member.next), &pos->member != (head);  
             pos = list_entry(pos->member.next, typeof(*pos), member))
    /**
     * list_for_each_entry_safe - iterate over list of given type safe against removal of list entry
     * @pos:    the type * to use as a loop cursor.
     * @n:      another type * to use as temporary storage
     * @head:   the head for your list.
     * @member: the name of the list_struct within the struct.
     */
    #define list_for_each_entry_safe(pos, n, head, member)          
        for (pos = list_entry((head)->next, typeof(*pos), member),  
            n = list_entry(pos->member.next, typeof(*pos), member); 
             &pos->member != (head);                    
             pos = n, n = list_entry(n->member.next, typeof(*n), member))
    
    /**
     * list_for_each_entry_safe_continue - continue list iteration safe against removal
     * @pos:    the type * to use as a loop cursor.
     * @n:      another type * to use as temporary storage
     * @head:   the head for your list.
     * @member: the name of the list_struct within the struct.
     *
     * Iterate over list of given type, continuing after current point,
     * safe against removal of list entry.
     */
    #define list_for_each_entry_safe_continue(pos, n, head, member)         
        for (pos = list_entry(pos->member.next, typeof(*pos), member),      
            n = list_entry(pos->member.next, typeof(*pos), member);     
             &pos->member != (head);                        
             pos = n, n = list_entry(n->member.next, typeof(*n), member))
    /**
     * list_for_each_entry_safe_from - iterate over list from current point safe against removal
     * @pos:    the type * to use as a loop cursor.
     * @n:      another type * to use as temporary storage
     * @head:   the head for your list.
     * @member: the name of the list_struct within the struct.
     *
     * Iterate over list of given type from current point, safe against
     * removal of list entry.
     */
    #define list_for_each_entry_safe_from(pos, n, head, member)             
        for (n = list_entry(pos->member.next, typeof(*pos), member);        
             &pos->member != (head);                        
             pos = n, n = list_entry(n->member.next, typeof(*n), member))
    
    /**
     * list_for_each_entry_safe_reverse - iterate backwards over list safe against removal
     * @pos:    the type * to use as a loop cursor.
     * @n:      another type * to use as temporary storage
     * @head:   the head for your list.
     * @member: the name of the list_struct within the struct.
     *
     * Iterate backwards over list of given type, safe against removal
     * of list entry.
     */
    #define list_for_each_entry_safe_reverse(pos, n, head, member)      
        for (pos = list_entry((head)->prev, typeof(*pos), member),  
            n = list_entry(pos->member.prev, typeof(*pos), member); 
             &pos->member != (head);                    
             pos = n, n = list_entry(n->member.prev, typeof(*n), member))
    /**
     * list_safe_reset_next - reset a stale list_for_each_entry_safe loop
     * @pos:    the loop cursor used in the list_for_each_entry_safe loop
     * @n:      temporary storage used in list_for_each_entry_safe
     * @member: the name of the list_struct within the struct.
     *
     * list_safe_reset_next is not safe to use in general if the list may be
     * modified concurrently (eg. the lock is dropped in the loop body). An
     * exception to this is if the cursor element (pos) is pinned in the list,
     * and list_safe_reset_next is called after re-taking the lock and before
     * completing the current iteration of the loop body.
     */
    #define list_safe_reset_next(pos, n, member)                
        n = list_entry(pos->member.next, typeof(*pos), member)

     ---------------------------------------------------------------------------------------------------------------------

    双向链表--单指针,hlist

    精益求精的Linux链表设计者(因为list.h没有署名,所以很可能就是Linus Torvalds)认为双头(next、prev)的双链表对于HASH表来说"过于浪费",因而另行设计了一套用于HASH表应用的hlist数据结构--单指针表头双循环链表。

    从上图可以看出,hlist的表头仅有一个指向首节点的指针,而没有指向尾节点的指针,这样在可能是海量的HASH表中存储的表头就能减少一半的空间消耗。

    因为表头和节点的数据结构不同,插入操作如果发生在表头和首节点之间,以往的方法就行不通了:表头的first指针必须修改指向新插入的节点,却不能使用类似list_add()这样统一的描述。

    为此,hlist节点的prev不再是指向前一个节点的指针,而是指向前一个节点(可能是表头)中的next(对于表头则是first)指针(struct list_head **pprev),从而在表头插入的操作可以通过一致的"*(node->pprev)"访问和修改前驱节点的next(或first)指针。

    /*
     * Double linked lists with a single pointer list head.
     * Mostly useful for hash tables where the two pointer list head is
     * too wasteful.
     * You lose the ability to access the tail in O(1).
     */
    *
     * Double linked lists with a single pointer list head.
     * Mostly useful for hash tables where the two pointer list head is
     * too wasteful.
     * You lose the ability to access the tail in O(1).
     */
    
    struct hlist_head {
        struct hlist_node *first;
    };
    
    struct hlist_node {
        struct hlist_node *next, **pprev;
    };
    #define HLIST_HEAD_INIT { .first = NULL }
    #define HLIST_HEAD(name) struct hlist_head name = {  .first = NULL }
    #define INIT_HLIST_HEAD(ptr) ((ptr)->first = NULL)
    static inline void INIT_HLIST_NODE(struct hlist_node *h)
    {
        h->next = NULL;
        h->pprev = NULL;
    }
    
    static inline int hlist_unhashed(const struct hlist_node *h)
    {
        return !h->pprev;
    }
    
    static inline int hlist_empty(const struct hlist_head *h)
    {
        return !h->first;
    }
    static inline void __hlist_del(struct hlist_node *n)
    {
        struct hlist_node *next = n->next;
        struct hlist_node **pprev = n->pprev;
        *pprev = next;
        if (next)
            next->pprev = pprev;
    }
    
    static inline void hlist_del(struct hlist_node *n)
    {
        __hlist_del(n);
        n->next = LIST_POISON1;
        n->pprev = LIST_POISON2;
    }
    
    static inline void hlist_del_init(struct hlist_node *n)
    {
        if (!hlist_unhashed(n)) {
            __hlist_del(n);
            INIT_HLIST_NODE(n);
        }
    }
    static inline void hlist_add_head(struct hlist_node *n, struct hlist_head *h)
    {
        struct hlist_node *first = h->first;
        n->next = first;
        if (first)
            first->pprev = &n->next;
        h->first = n;
        n->pprev = &h->first;
    }
    
    /* next must be != NULL */
    static inline void hlist_add_before(struct hlist_node *n,
                        struct hlist_node *next)
    {
        n->pprev = next->pprev;
        n->next = next;
        next->pprev = &n->next;
        *(n->pprev) = n;
    }
    
    static inline void hlist_add_after(struct hlist_node *n,
                        struct hlist_node *next)
    {
        next->next = n->next;
        n->next = next;
        next->pprev = &n->next;
    
        if(next->next)
            next->next->pprev  = &next->next;
    }
    /*
     * Move a list from one list head to another. Fixup the pprev
     * reference of the first entry if it exists.
     */
    static inline void hlist_move_list(struct hlist_head *old,
                       struct hlist_head *new)
    {
        new->first = old->first;
        if (new->first)
            new->first->pprev = &new->first;
        old->first = NULL;
    }
    #define hlist_entry(ptr, type, member) container_of(ptr,type,member)
    
    #define hlist_for_each(pos, head) 
        for (pos = (head)->first; pos && ({ prefetch(pos->next); 1; }); 
             pos = pos->next)
    
    #define hlist_for_each_safe(pos, n, head) 
        for (pos = (head)->first; pos && ({ n = pos->next; 1; }); 
             pos = n)
    
    /**
     * hlist_for_each_entry - iterate over list of given type
     * @tpos:   the type * to use as a loop cursor.
     * @pos:    the &struct hlist_node to use as a loop cursor.
     * @head:   the head for your list.
     * @member: the name of the hlist_node within the struct.
     */
    #define hlist_for_each_entry(tpos, pos, head, member)            
        for (pos = (head)->first;                    
             pos && ({ prefetch(pos->next); 1;}) &&          
            ({ tpos = hlist_entry(pos, typeof(*tpos), member); 1;}); 
             pos = pos->next)
    /**
     * hlist_for_each_entry_continue - iterate over a hlist continuing after current point
     * @tpos:   the type * to use as a loop cursor.
     * @pos:    the &struct hlist_node to use as a loop cursor.
     * @member: the name of the hlist_node within the struct.
     */
    #define hlist_for_each_entry_continue(tpos, pos, member)         
        for (pos = (pos)->next;                      
             pos && ({ prefetch(pos->next); 1;}) &&          
            ({ tpos = hlist_entry(pos, typeof(*tpos), member); 1;}); 
             pos = pos->next)
    
    /**
     * hlist_for_each_entry_from - iterate over a hlist continuing from current point
     * @tpos:   the type * to use as a loop cursor.
     * @pos:    the &struct hlist_node to use as a loop cursor.
     * @member: the name of the hlist_node within the struct.
     */
    #define hlist_for_each_entry_from(tpos, pos, member)             
        for (; pos && ({ prefetch(pos->next); 1;}) &&            
            ({ tpos = hlist_entry(pos, typeof(*tpos), member); 1;}); 
             pos = pos->next)
    /**
     * hlist_for_each_entry_safe - iterate over list of given type safe against removal of list entry
     * @tpos:   the type * to use as a loop cursor.
     * @pos:    the &struct hlist_node to use as a loop cursor.
     * @n:      another &struct hlist_node to use as temporary storage
     * @head:   the head for your list.
     * @member: the name of the hlist_node within the struct.
     */
    #define hlist_for_each_entry_safe(tpos, pos, n, head, member)        
        for (pos = (head)->first;                    
             pos && ({ n = pos->next; 1; }) &&               
            ({ tpos = hlist_entry(pos, typeof(*tpos), member); 1;}); 
             pos = n)

    安全性考虑

    在并发执行的环境下,链表操作通常都应该考虑同步安全性问题,为了方便,Linux将这一操作留给应用自己处理。Linux链表自己考虑的安全性主要有两个方面:

    a) list_empty()判断

    基本的list_empty()仅以头指针的next是否指向自己来判断链表是否为空,Linux链表另行提供了一个list_empty_careful()宏,它同时判断头指针的next和prev,仅当两者都指向自己时才返回真。这主要是为了应付另一个cpu正在处理同一个链表而造成next、prev不一致的情况。但代码注释也承认,这一安全保障能力有限:除非其他cpu的链表操作只有list_del_init(),否则仍然不能保证安全,也就是说,还是需要加锁保护。

    b) 遍历时节点删除

    前面介绍了用于链表遍历的几个宏,它们都是通过移动pos指针来达到遍历的目的。但如果遍历的操作中包含删除pos指针所指向的节点,pos指针的移动就会被中断,因为list_del(pos)将把pos的next、prev置成LIST_POSITION2和LIST_POSITION1的特殊值。

    当然,调用者完全可以自己缓存next指针使遍历操作能够连贯起来,但为了编程的一致性,Linux链表仍然提供了两个对应于基本遍历操作的"_safe"接口:list_for_each_safe(pos, n, head)、list_for_each_entry_safe(pos, n, head, member),它们要求调用者另外提供一个与pos同类型的指针n,在for循环中暂存pos下一个节点的地址,避免因pos节点被释放而造成的断链。

    附:

    #define offsetof(TYPE, MEMBER)   ((size_t) &((TYPE *)0)->MEMBER)
    
    /**
     * container_of - cast a member of a structure out to the containing structure
     * @ptr:    the pointer to the member.
     * @type:    the type of the container struct this is embedded in.
     * @member:    the name of the member within the struct.
     *
     */
    #define container_of(ptr, type, member) (type *)((char *)ptr -offsetof(type,member))
  • 相关阅读:
    说说我当初是如何学Linux的
    案例八:shell自动化管理账本脚本
    案例七:shell实现开机自动播放挂载本地yum仓库程序
    案例六:shell脚本监控httpd服务80端口状态
    案例五:shell脚本实现定时监控http服务的运行状态
    案例四:Shell脚本生成随机密码
    案例三:shell统计ip访问情况并分析访问日志
    案例二:shell脚本获取当前日期和时间及磁盘使情况
    案例一:shell脚本指定日期减去一天
    Linux:保证数据安全落盘
  • 原文地址:https://www.cnblogs.com/embedded-linux/p/5494283.html
Copyright © 2011-2022 走看看