常用排序算法特性
1. 插入排序
原理:将数组分为无序区和有序区两个区,然后不断将无序区的第一个元素按大小顺序插入到有序区中去,最终将所有无序区元素都移动到有序区完成排序。
对于未排序数据(右手抓到的牌),在已排序序列(左手已经排好序的手牌)中从后向前扫描,找到相应位置并插入。
插入排序在实现上,通常采用in-place排序(即只需用到O(1)的额外空间的排序),因而在从后向前扫描过程中,需要反复把已排序元素逐步向后挪位,为最新元素提供插入空间。
#include <stdio.h> // 分类 ------------- 内部比较排序 // 数据结构 ---------- 数组 // 最差时间复杂度 ---- 最坏情况为输入序列是降序排列的,此时时间复杂度O(n^2) // 最优时间复杂度 ---- 最好情况为输入序列是升序排列的,此时时间复杂度O(n) // 平均时间复杂度 ---- O(n^2) // 所需辅助空间 ------ O(1) // 稳定性 ------------ 稳定 void InsertionSort(int A[], int n) { for (int i = 1; i < n; i++) // 类似抓扑克牌排序 { int get = A[i]; // 右手抓到一张扑克牌 int j = i - 1; // 拿在左手上的牌总是排序好的 while (j >= 0 && A[j] > get) // 将抓到的牌与手牌从右向左进行比较 { A[j + 1] = A[j]; // 如果该手牌比抓到的牌大,就将其右移 j--; } A[j + 1] = get; // 直到该手牌比抓到的牌小(或二者相等),将抓到的牌插入到该手牌右边(相等元素的相对次序未变,所以插入排序是稳定的) } } int main() { int A[] = { 6, 5, 3, 1, 8, 7, 2, 4 };// 从小到大插入排序 int n = sizeof(A) / sizeof(int); InsertionSort(A, n); printf("插入排序结果:"); for (int i = 0; i < n; i++) { printf("%d ", A[i]); } printf(" "); return 0; }
2. 冒泡排序
原理:从数组中第一个数开始,依次遍历数组中的每一个数,通过相邻比较交换,每一轮循环下来找出剩余未排序数的中的最大数并”冒泡”至数列的顶端。
#include <stdio.h> // 分类 -------------- 内部比较排序 // 数据结构 ---------- 数组 // 最差时间复杂度 ---- O(n^2) // 最优时间复杂度 ---- 如果能在内部循环第一次运行时,使用一个旗标来表示有无需要交换的可能,可以把最优时间复杂度降低到O(n) // 平均时间复杂度 ---- O(n^2) // 所需辅助空间 ------ O(1) // 稳定性 ------------ 稳定 void Swap(int A[], int i, int j) { int temp = A[i]; A[i] = A[j]; A[j] = temp; } void BubbleSort(int A[], int n) { for (int j = 0; j < n - 1; j++) // 每次最大元素就像气泡一样"浮"到数组的最后 { for (int i = 0; i < n - 1 - j; i++) // 依次比较相邻的两个元素,使较大的那个向后移 { if (A[i] > A[i + 1]) // 如果条件改成A[i] >= A[i + 1],则变为不稳定的排序算法 { Swap(A, i, i + 1); } } } } int main() { int A[] = { 6, 5, 3, 1, 8, 7, 2, 4 }; // 从小到大冒泡排序 int n = sizeof(A) / sizeof(int); BubbleSort(A, n); printf("冒泡排序结果:"); for (int i = 0; i < n; i++) { printf("%d ", A[i]); } printf(" "); return 0; }
3. 快速排序
快速排序使用分治策略(Divide and Conquer)来把一个序列分为两个子序列。步骤为:
1)从序列中挑出一个元素,作为"基准"(pivot).
2)把所有比基准值小的元素放在基准前面,所有比基准值大的元素放在基准的后面(相同的数可以到任一边),这个称为分区(partition)操作。
3)对每个分区递归地进行步骤1~2,递归的结束条件是序列的大小是0或1,这时整体已经被排好序了。
void sort(int *a, int left, int right) { if(left >= right)/*如果左边索引大于或者等于右边的索引就代表已经整理完成一个组了*/ { return ; } int i = left; int j = right; int key = a[left]; while(i < j) /*控制在当组内寻找一遍*/ { while(i < j && key <= a[j]) /*而寻找结束的条件就是,1,找到一个小于或者大于key的数(大于或小于取决于你想升 序还是降序)2,没有符合条件1的,并且i与j的大小没有反转*/ { j--;/*向前寻找*/ } a[i] = a[j]; /*找到一个这样的数后就把它赋给前面的被拿走的i的值(如果第一次循环且key是 a[left],那么就是给key)*/ while(i < j && key >= a[i]) /*这是i在当组内向前寻找,同上,不过注意与key的大小关系停止循环和上面相反, 因为排序思想是把数往两边扔,所以左右两边的数大小与key的关系相反*/ { i++; } a[j] = a[i]; } a[i] = key;/*当在当组内找完一遍以后就把中间数key回归*/ sort(a, left, i - 1);/*最后用同样的方式对分出来的左边的小组进行同上的做法*/ sort(a, i + 1, right);/*用同样的方式对分出来的右边的小组进行同上的做法*/ /*当然最后可能会出现很多分左右,直到每一组的i = j 为止*/ }
参考:
1. 常用排序算法总结(一)