zoukankan      html  css  js  c++  java
  • 【Pig源码分析】谈谈Pig的数据模型

    1. 数据模型

    Schema

    Pig Latin表达式操作的是relation,FILTER、FOREACH、GROUP、SPLIT等关系操作符所操作的relation就是bag,bag为tuple的集合,tuple为有序的field列表集合,而field表示数据块(A field is a piece of data),可理解为数据字段。

    Schema为数据所遵从的类型格式,包括:field的名称及类型(names and types)。用户常用as语句来自定义schema,或是load函数导入schema,比如:

    A = foreach X generate .. as field1:chararray, .. as field2:bag{};
    A = load '..' using PigStorage('	', '-schema');
    A = load '..' using org.apache.pig.piggybank.storage.avro.AvroStorage();
    

    若不指定field的类型,则其默认为bytearray。对未知schema进行操作时,有:

    • 若join/cogroup/cross多关系操作遇到未知schema,则会将其视为null schema,导致返回结果的schema也为null;
    • 若flatten一个empty inner schema的bag(即:bag{})时,则返回结果的schema为null;
    • 若union时二者relation的schema不一致,则返回结果的schema为null;
    • 若field的schema为null,会将该字段视为bytearray。

    为了保证pig脚本运行的有效性,在写UDF时要在outputSchema方法中指定返回结果的schema。

    数据类型

    Pig的基本数据类型与对应的Java类:

    Simple Pig Type Example Java Class
    bytearray DataByteArray
    chararray 'hello world' String
    int 10 Integer
    long 10L Long
    float 10.5F or 1050.0F Float
    double Double
    boolean true/false Boolean
    datetime DateTime
    bigdecimal BigDecimal
    biginteger BigInteger

    复杂数据类型及其对应的Java类:

    Complex Pig Type Example Java Class
    tuple (19, 'hello') Tuple
    bag {('hello'), (18, 1)} DataBag
    map [open#apache] Map

    Pig的复杂数据类型可以嵌套表达,比如:tuple中有tuple (a, (b, c, d)),tuple中有bag (a, {(b,c), (d,e)})等等。但是一定要遵从数据类型本身的定义,比如:bag中只能是tuple的集合,比如{a, {(b),(c)}}就是不合法的。

    Pig还有一种特殊的数据类型:null,与Java、C中null不一样,其表示不知道的或不存在的数据类型(unknown or non-existent)。比如,在load数据时,如果有的数据行字段不符合定义的schema,则该字段会被置为null。

    2. 源码分析

    以下源码分析采用的是0.12版本。

    Tuple

    在KEYSET源码中,创建Tuple对象采用工厂+单例设计模式

    private static final TupleFactory TUPLE_FACTORY = TupleFactory.getInstance();
    Tuple t = TUPLE_FACTORY.newTuple(s);
    

    事实上,TupleFactory是个抽象类,实现接口TupleMaker<Tuple>。在方法TupleFactory.getInstance()中,默认情况下返回的是BinSedesTupleFactory对象,同时支持加载用户重写的TupleFactory类(pig.data.tuple.factory.name指定类名、 pig.data.tuple.factory.jar指定类所在的jar)。BinSedesTupleFactory继承于TupleFactory:

    在BinSedesTupleFactory的newTuple方法中,返回的是BinSedesTuple对象。BinSedesTuple类继承于DefaultTuple类,在DefaultTuple类中有List<Object> mFields字段,这便是存储Tuple数据的地方了,mFields所持有类型为ArrayList<Object>();。类图关系:

    Bag

    创建Bag对象有下面几种方法:

    // factory
    BagFactory mBagFactory = BagFactory.getInstance();
    DataBag output = mBagFactory.newDefaultBag();
    
    // if you know upfront how many tuples you are going  to put in this bag.
    DataBag bag = new NonSpillableDataBag(m.size());
    

    与TupleFactory一样,BagFactory也是抽象类,也支持用户自定义重写;getInstance方法默认返回的是DefaultBagFactory。DefaultBagFactory有newDefaultBag、newSortedBag、newDistinctBag方法分别创建三类bag:

    • default bag中的tuple没有排序,也没有去重;
    • sorted bag中的tuple是按序存放,顺序是由tuple default comparator或bag创建时的comparator所定义的;
    • distinct bag顾名思义,tuple有去重。

    三类bag的构造器如下:

    public DefaultDataBag() {
        mContents = new ArrayList<Tuple>();
    }
    
    public SortedDataBag(Comparator<Tuple> comp) {
        mComp = (comp == null) ? new DefaultComparator() : comp;
        mContents = new ArrayList<Tuple>();
    }
    
    public DistinctDataBag() {
        mContents = new HashSet<Tuple>();
    }
    

    BagFactory的类图:

    DefaultAbstractBag作为三种类型bag的基类,有一个字段mContents用于存放tuple,NonSpillableDataBag直接实现DataBag接口。DataBag的类图:

    3. 实战

    现有avro日志数据(见前一篇),其字段:

    • dvc表示用户手机标识;
    • appUseappInstall同为avro Map类型,其key为app名称(app name),value为Map<String, Object>,包含了一个表示使用时间的字段timelist(类型为ArrayList);具体格式如下
    'dvc': 'imei_123',
    'appUse': {
        'app name1': {
            ...
            'timelist': [...]
        },
        'app name2': {
            ...
            'timelist': [...]
        },
        ...
    },
    'appInstall': {
        'app name1': {
            ...
            'timelist': [...]
        },
        ...
    }
    

    现在,想要得到每个用户的app列表及app的打开次数,以格式dvc, {(app)}, {(app, frequency)}输出,即用户 + app列表 + 使用次数类表。如果用MapRduce做,得分为以下步骤:

    1. 以(dvc, app)为key值,计算value值为使用次数;
    2. 以dvc为key值,合并同一用户的不同app,value值为(app, fre);
    3. 以dvc为key值,计算appinstall的app列表;
    4. 将步骤2得到的数据与步骤3得到的数据做join,然后输出。

    可以看出用MapReduce略显繁复,如何来用pig来实现呢?我们可以对appUse:map[]编写EVAL UDF,让其返回(app名称, timelist的长度) :

    public class AppTimelist  extends EvalFunc<DataBag>{
    	private static final TupleFactory TUPLE_FACTORY = TupleFactory.getInstance();
    	private static final BagFactory BAG_FACTORY = BagFactory.getInstance();
    	
    	@SuppressWarnings({ "unchecked" })
    	@Override
    	public DataBag exec(Tuple input) throws IOException {
    		Map<String, Map<String, Object>> m = (Map<String, Map<String, Object>>) input.get(0);
    		List<Object> result = new ArrayList<Object>();
    		DataBag output = BAG_FACTORY.newDefaultBag();
    					
    		if(m == null) 
    			return null;
    		
    		for(Map.Entry<String, Map<String, Object>> e: m.entrySet()) {
    			result.clear();
    			String app = e.getKey();
    			long size = ((DataBag) e.getValue().get("timelist")).size();
    			result.add(app);
    			result.add(size);
    			output.add(TUPLE_FACTORY.newTuple(result));
    		}
    		
    		return output;
    	}
    }
    

    pig将Java的ArrayList转成DataBag的类型,所以要对timelist进行强转操作。

    appInstall:map[]编写EVAL UDF,返回(appList):

    public class DistinctBag extends EvalFunc<DataBag> {
    	BagFactory mBagFactory = BagFactory.getInstance();
    	
    	@Override
    	public DataBag exec(Tuple input) throws IOException {
    		if(input == null || input.size() == 0) {
                return null;
            }
    		
    		DataBag in = (DataBag) input.get(0);
    		DataBag out = mBagFactory.newDistinctBag();
    		
    		if(in == null) {
    			return null;
    		}
    		
    		for(Tuple tp: in) {
    			DataBag applist = (DataBag) tp.get(0);
    			for(Tuple app: applist) 
    				out.add(app);
    		}	
    		return out;
    	}
    }
    

    上面提到过,若没有给EVAL UDF指定返回值的schema,则返回结果的schema为null,如此会造成类型的丢失,在后面的操作中容易报NullPointerException。

    // AppTimelist.java
    @Override
    public Schema outputSchema(Schema input) {
        try {
            Schema tupleSchema = new Schema();
            FieldSchema chararrayFieldSchema = new Schema.FieldSchema(null, DataType.CHARARRAY);
            FieldSchema longFieldSchema = new Schema.FieldSchema(null, DataType.LONG);
            tupleSchema.add(chararrayFieldSchema);
            tupleSchema.add(longFieldSchema);
            return new Schema(new Schema.FieldSchema(getSchemaName(this
                    .getClass().getName().toLowerCase(), input), tupleSchema,
                    DataType.TUPLE));
        } catch (Exception e) {
            return null;
        }
    }
    
    // DistinctBag.java
    @Override
    public Schema outputSchema(Schema input) {
        FieldSchema innerFieldSchema = new Schema.FieldSchema(null, DataType.CHARARRAY);
        Schema innerSchema = new Schema(innerFieldSchema);
        Schema bagSchema = null;
    
        try {
            bagSchema = new Schema(new FieldSchema(null, innerSchema, DataType.BAG));
        } catch(FrontendException e) {
            throw new RuntimeException(e);
        }
        return bagSchema;
    }
    

    统计app列表:

    define AvroStorage org.apache.pig.piggybank.storage.avro.AvroStorage;
    define DistinctBag com.pig.udf.bag.DistinctBag;
    A = load '..' using AvroStorage();
    B = foreach A generate value.fields.data#'dvc' as dvc:chararray, value.fields.data#'appInstall' as ins:map[map[]];
    C = foreach B generate dvc, KEYSET(ins) as applist;
    D = group C by dvc;
    -- extract applist from grouped D
    E = foreach D {
    	projected = foreach $1 generate applist;
    	generate group as dvc, projected as grouped;
    }
    F = foreach E generate dvc, DistinctBag(grouped) as applist;
    store F into '..' using AvroStorage();
    

    统计app使用时长:

    define AvroStorage org.apache.pig.piggybank.storage.avro.AvroStorage;
    define AppTimelist com.pig.udf.map.AppTimelist;
    A = load '..' using AvroStorage();
    B = foreach A generate value.fields.data#'dvc' as dvc:chararray, value.fields.data#'appUse' as use:map[map[]];
    C = foreach B generate dvc, flatten(AppTimelist(use)) as (app, fre);
    D = group C by (dvc, app);
    E = foreach D generate flatten(group) as (dvc, app), SUM($1.fre) as fre;
    F = group E by dvc;
    G = foreach F {
    	    projected = foreach $1 generate app, fre;
            generate group as dvc, projected as appfre;
    }
    store G into '..' using AvroStorage();
    

    二者做join即可得到结果。

  • 相关阅读:
    作业十三
    作业十二
    第十一次作业
    编译原理第十次作业
    P3388 【模板】割点(割顶) 题解 (Tarjan)
    BuaacodingT141 microhhh的回城 题解(模拟)
    P2055 [ZJOI2009]假期的宿舍 题解(二分图)
    P2764 最小路径覆盖问题 题解(二分图)
    2019.2-2019.3 TO-DO LIST
    P3369 【模板】普通平衡树 题解(Splay/FHQ)
  • 原文地址:https://www.cnblogs.com/en-heng/p/5145054.html
Copyright © 2011-2022 走看看