zoukankan      html  css  js  c++  java
  • 灵活可扩展的工作流管理平台Airflow

    1. 引言

    Airflow是Airbnb开源的一个用Python写就的工作流管理平台(workflow management platform)。在前一篇文章中,介绍了如何用Crontab管理数据流,但是缺点也是显而易见。针对于Crontab的缺点,灵活可扩展的Airflow具有以下特点:

    • 工作流依赖关系的可视化;
    • 日志追踪;
    • (Python脚本)易于扩展

    对比Java系的Oozie,Airflow奉行“Configuration as code”哲学,对于描述工作流、判断触发条件等全部采用Python,使得你编写工作流就像在写脚本一样;能debug工作流(test backfill命令),更好地判别是否有错误;能更快捷地在线上做功能扩展。Airflow充分利用Python的灵巧轻便,相比之下Oozie则显得笨重厚拙太多(其实我没在黑Java~~)。《What makes Airflow great?》介绍了更多关于Airflow的优良特性;其他有关于安装、介绍的文档在这里还有这里

    下表给出Airflow(基于1.7版本)与Oozie(基于4.0版本)对比情况:

    功能 Airflow Oozie
    工作流描述 Python xml
    数据触发 Sensor datasets, input-events
    工作流节点 operator action
    完整工作流 DAG workflow
    定期调度 DAG schedule_interval coordinator frequency
    任务依赖 >>, << <ok to>
    内置函数、变量 template macros EL function, EL constants

    之前我曾提及Oozie没有能力表达复杂的DAG,是因为Oozie只能指定下流依赖(downstream)而不能指定上流依赖(upstream)。与之相比,Airflow就能表示复杂的DAG。Airflow没有像Oozie一样区分workflow与coordinator,而是把触发条件、工作流节点都看作一个operator,operator组成一个DAG。

    2. 实战

    Airflow常见命令如下:

    • initdb,初始化元数据DB,元数据包括了DAG本身的信息、运行信息等;
    • resetdb,清空元数据DB;
    • list_dags,列出所有DAG;
    • list_tasks,列出某DAG的所有task;
    • test,测试某task的运行状况;
    • backfill,测试某DAG在设定的日期区间的运行状况;
    • webserver,开启webserver服务;
    • scheduler,用于监控与触发DAG。

    下面将给出如何用Airflow完成data pipeline任务。

    首先简要地介绍下背景:定时(每周)检查Hive表的partition的任务是否有生成,若有则触发Hive任务写Elasticsearch;然后等Hive任务完后,执行Python脚本查询Elasticsearch发送报表。但是,Airflow对Python3支持有问题(依赖包为Python2编写);因此不得不自己写HivePartitionSensor

    # -*- coding: utf-8 -*-
    # @Time    : 2016/11/29
    # @Author  : rain
    from airflow.operators import BaseSensorOperator
    from airflow.utils.decorators import apply_defaults
    from impala.dbapi import connect
    import logging
    
    
    class HivePartitionSensor(BaseSensorOperator):
        """
        Waits for a partition to show up in Hive.
    
        :param host, port: the host and port of hiveserver2
        :param table: The name of the table to wait for, supports the dot notation (my_database.my_table)
        :type table: string
        :param partition: The partition clause to wait for. This is passed as
            is to the metastore Thrift client,and apparently supports SQL like
            notation as in ``ds='2016-12-01'``.
        :type partition: string
        """
        template_fields = ('table', 'partition',)
        ui_color = '#2b2d42'
    
        @apply_defaults
        def __init__(
                self,
                conn_host, conn_port,
                table, partition="ds='{{ ds }}'",
                poke_interval=60 * 3,
                *args, **kwargs):
            super(HivePartitionSensor, self).__init__(
                poke_interval=poke_interval, *args, **kwargs)
            if not partition:
                partition = "ds='{{ ds }}'"
            self.table = table
            self.partition = partition
            self.conn_host = conn_host
            self.conn_port = conn_port
            self.conn = connect(host=self.conn_host, port=self.conn_port, auth_mechanism='PLAIN')
    
        def poke(self, context):
            logging.info(
                'Poking for table {self.table}, '
                'partition {self.partition}'.format(**locals()))
            cursor = self.conn.cursor()
            cursor.execute("show partitions {}".format(self.table))
            partitions = cursor.fetchall()
            partitions = [i[0] for i in partitions]
            if self.partition in partitions:
                return True
            else:
                return False
    

    Python3连接Hive server2的采用的是impyla模块,HivePartitionSensor用于判断Hive表的partition是否存在。写自定义的operator,有点像写Hive、Pig的UDF;写好的operator需要放在目录~/airflow/dags,以便于DAG调用。那么,完整的工作流DAG如下:

    # tag cover analysis, based on Airflow v1.7.1.3
    from airflow.operators import BashOperator
    from operatorUD.HivePartitionSensor import HivePartitionSensor
    from airflow.models import DAG
    
    from datetime import datetime, timedelta
    from impala.dbapi import connect
    
    conn = connect(host='192.168.72.18', port=10000, auth_mechanism='PLAIN')
    
    
    def latest_hive_partition(table):
        cursor = conn.cursor()
        cursor.execute("show partitions {}".format(table))
        partitions = cursor.fetchall()
        partitions = [i[0] for i in partitions]
        return partitions[-1].split("=")[1]
    
    
    log_partition_value = """{{ macros.ds_add(ds, -2)}}"""
    tag_partition_value = latest_hive_partition('tag.dmp')
    
    args = {
        'owner': 'jyzheng',
        'depends_on_past': False,
        'start_date': datetime.strptime('2016-12-06', '%Y-%m-%d')
    }
    
    # execute every Tuesday
    dag = DAG(
        dag_id='tag_cover', default_args=args,
        schedule_interval='@weekly',
        dagrun_timeout=timedelta(minutes=10))
    
    ad_sensor = HivePartitionSensor(
        task_id='ad_sensor',
        conn_host='192.168.72.18',
        conn_port=10000,
        table='ad.ad_log',
        partition="day_time={}".format(log_partition_value),
        dag=dag
    )
    
    ad_hive_task = BashOperator(
        task_id='ad_hive_task',
        bash_command='hive -f /path/to/cron/cover/ad_tag.hql --hivevar LOG_PARTITION={} '
                     '--hivevar TAG_PARTITION={}'.format(log_partition_value, tag_partition_value),
        dag=dag
    )
    
    ad2_hive_task = BashOperator(
        task_id='ad2_hive_task',
        bash_command='hive -f /path/to/cron/cover/ad2_tag.hql --hivevar LOG_PARTITION={} '
                     '--hivevar TAG_PARTITION={}'.format(log_partition_value, tag_partition_value),
        dag=dag
    )
    
    report_task = BashOperator(
        task_id='report_task',
        bash_command='sleep 5m; python3 /path/to/cron/report/tag_cover.py {}'.format(log_partition_value),
        dag=dag
    )
    
    ad_sensor >> ad_hive_task >> report_task
    ad_sensor >> ad2_hive_task >> report_task
    
  • 相关阅读:
    JS放在head和放在body中的区别
    模板模式(Template Pattern)
    原型模式
    Linux下的头文件搜索路径
    How to Change the Default Theme Appearance [editing with no theme]
    版本控制
    What is libacl.so.1 ?
    交叉编译器 arm-linux-gnueabi 和 arm-linux-gnueabihf 的区别
    mount --bind 的妙用
    mount的bind选项
  • 原文地址:https://www.cnblogs.com/en-heng/p/6119326.html
Copyright © 2011-2022 走看看