3-SAT问题?这不是npc吗。。。
但是我们发现(xleq 8),于是我们可以枚举这些(X)禁止使用了什么类型的汽车,很明显我们只需要枚举(A)和(B)就可以覆盖所有的情况了
之后就是一个经典的2-sat求方案了
感觉思路简单清晰但是有些难写
#include<iostream>
#include<string.h>
#include<string>
#include<stdio.h>
#include<algorithm>
#include<vector>
#include<math.h>
#include<queue>
#include<stack>
#include<set>
#include<map>
using namespace std;
typedef long long ll;
#define lowbit(x) (x)&(-x)
#define sqr(x) (x)*(x)
#define rep(i,a,b) for (register int i=a;i<=b;i++)
#define per(i,a,b) for (register int i=a;i>=b;i--)
#define maxd 998244353
#define eps 1e-8
struct edgenode{
int to,nxt;
}sq[200200];
int all=0,head[200100];
struct qnode{
int a,opa,b,opb;
}q[200100];
stack<int> sta;
int n,m,d,ban[200050],tim=0,dfn[200100],low[200100],
col[200100],scc=0,ans[200100];
char ch1[10],ch2[10],s[200100];
bool in[200100];
vector<int> posx;
int read()
{
int x=0,f=1;char ch=getchar();
while ((ch<'0') || (ch>'9')) {if (ch=='-') f=-1;ch=getchar();}
while ((ch>='0') && (ch<='9')) {x=x*10+(ch-'0');ch=getchar();}
return x*f;
}
void add(int u,int v)
{
all++;sq[all].to=v;sq[all].nxt=head[u];head[u]=all;
}
void tarjan(int u)
{
dfn[u]=low[u]=(++tim);
in[u]=1;sta.push(u);
int i;
for (i=head[u];i;i=sq[i].nxt)
{
int v=sq[i].to;
if (!dfn[v])
{
tarjan(v);
low[u]=min(low[u],low[v]);
}
else if (in[v]) low[u]=min(low[u],dfn[v]);
}
if (dfn[u]==low[u])
{
scc++;
while (1)
{
int v=sta.top();sta.pop();
col[v]=scc;in[v]=0;
if (u==v) break;
}
}
}
int neg(int u)
{
if (u>n) return u-n;else return u+n;
}
int trans(int u,int op)
{
if (ban[u]==0)
{
if (op==1) return u;else return u+n;
}
else if (ban[u]==1)
{
if (op==0) return u;else return u+n;
}
else if (ban[u]==2)
{
if (op==0) return u;else return u+n;
}
}
int untrans(int u,int op)
{
if (op)
{
if (ban[u]==0) return 1;
else if (ban[u]==1) return 0;
else if (ban[u]==2) return 0;
}
else
{
if (ban[u]==0) return 2;
else if (ban[u]==1) return 2;
else if (ban[u]==2) return 1;
}
}
int work(int sta)
{
all=0;scc=0;tim=0;
memset(dfn,0,sizeof(dfn));
memset(low,0,sizeof(low));
memset(head,0,sizeof(head));
rep(i,0,d-1)
{
if ((sta>>i)&1) ban[posx[i]]=2;else ban[posx[i]]=1;
}
rep(i,1,m)
{
int u=q[i].a,v=q[i].b;
if (q[i].opa==ban[u]) continue;
u=trans(u,q[i].opa);
if (q[i].opb==ban[v]) {add(u,neg(u));continue;}
v=trans(v,q[i].opb);
add(u,v);add(neg(v),neg(u));
}
rep(i,1,n*2) if (!dfn[i]) tarjan(i);
rep(i,1,n) if (col[i]==col[i+n]) return 0;
rep(i,1,n) ans[i]=untrans(i,col[i+n]>col[i]);
rep(i,1,n) putchar('A'+ans[i]);
return 1;
}
int main()
{
n=read();d=read();
scanf("%s",s+1);
rep(i,1,n)
if (s[i]=='x') posx.push_back(i);
else ban[i]=s[i]-'a';
m=read();
rep(i,1,m)
{
scanf("%d%s%d%s",&q[i].a,ch1,&q[i].b,ch2);
q[i].opa=ch1[0]-'A';
q[i].opb=ch2[0]-'A';
}
rep(sta,0,(1<<d)-1)
if (work(sta)) return 0;
puts("-1");
return 0;
}