zoukankan      html  css  js  c++  java
  • tensorflow最基础分类实例--iris分类

    安装tensorflow 1.5版本之后,运行简单的iris分类。

    参考官网: https://www.tensorflow.org/get_started/premade_estimators

    iris分类,根据sepals and petals.的量化值进行分类, 总共有3类,Iris setosa (by Radomil, CC BY-SA 3.0), Iris versicolor (by Dlanglois, CC BY-SA 3.0), and Iris virginica (by Frank Mayfield, CC BY-SA 2.0).

    训练集

    120,4,setosa,versicolor,virginica
    6.4,2.8,5.6,2.2,2
    5.0,2.3,3.3,1.0,1
    4.9,2.5,4.5,1.7,2
    4.9,3.1,1.5,0.1,0
    5.7,3.8,1.7,0.3,0
    4.4,3.2,1.3,0.2,0
    5.4,3.4,1.5,0.4,0
    6.9,3.1,5.1,2.3,2
    5.4,3.9,1.7,0.4,0
    7.7,3.8,6.7,2.2,2
    6.3,3.3,4.7,1.6,1
    6.8,3.2,5.9,2.3,2
    7.6,3.0,6.6,2.1,2
    6.4,3.2,5.3,2.3,2
    5.7,4.4,1.5,0.4,0

    测试集

    30,4,setosa,versicolor,virginica                           
    5.9,3.0,4.2,1.5,1                                          
    6.9,3.1,5.4,2.1,2                                          
    5.1,3.3,1.7,0.5,0                                          
    6.0,3.4,4.5,1.6,1                                          
    5.5,2.5,4.0,1.3,1                                          
    6.2,2.9,4.3,1.3,1                                          
    5.5,4.2,1.4,0.2,0                                          
    6.3,2.8,5.1,1.5,2                                          
    5.6,3.0,4.1,1.3,1                                          
    6.7,2.5,5.8,1.8,2                                          
    7.1,3.0,5.9,2.1,2                                          
    4.3,3.0,1.1,0.1,0                                          
    5.6,2.8,4.9,2.0,2                                          
    5.5,2.3,4.0,1.3,1                                          
    6.0,2.2,4.0,1.0,1                                          
    5.1,3.5,1.4,0.2,0                                          
    5.7,2.6,3.5,1.0,1                                          
    4.8,3.4,1.9,0.2,0                                          
    5.1,3.4,1.5,0.2,0                                          
    5.7,2.5,5.0,2.0,2                                          
    5.4,3.4,1.7,0.2,0     

    from __future__ import division
    from __future__ import print_function
    
    import os
    import urllib
    
    import numpy as np
    import tensorflow as tf
    
    # Data sets
    IRIS_TRAINING = "iris_training.csv"
    IRIS_TRAINING_URL = "http://download.tensorflow.org/data/iris_training.csv"
    
    IRIS_TEST = "iris_test.csv"
    IRIS_TEST_URL = "http://download.tensorflow.org/data/iris_test.csv"
    
    def main():
            # If the training and test sets aren't stored locally, download them.
            if not os.path.exists(IRIS_TRAINING):
                    raw = urllib.urlopen(IRIS_TRAINING_URL).read()
                    with open(IRIS_TRAINING, "w") as f:
                            f.write(raw)
    
            if not os.path.exists(IRIS_TEST):
                    raw = urllib.urlopen(IRIS_TEST_URL).read()
                    with open(IRIS_TEST, "w") as f:
                            f.write(raw)
    
            # Load datasets. featuresColumns, targe
                                                            
            training_set = tf.contrib.learn.datasets.base.load_csv_with_header(
            filename=IRIS_TRAINING,
            target_dtype=np.int,
            features_dtype=np.float32)
    
            test_set = tf.contrib.learn.datasets.base.load_csv_with_header(
            filename=IRIS_TEST,
            target_dtype=np.int,
            features_dtype=np.float32)
    
            # Specify that all features have real-value data
            feature_columns = [tf.contrib.layers.real_valued_column("", dimension=4)]
    
            # Build 3 layer DNN with 10, 20, 10 units respectively.
            classifier = tf.contrib.learn.DNNClassifier(feature_columns=feature_columns,hidden_units=[10, 20, 10],n_classes=3,model_dir="./iris_model")
    
            # Define the training inputs
            def get_train_inputs():
                    x = tf.constant(training_set.data)
                    y = tf.constant(training_set.target)
                    return x, y
    
            # Fit model.
            classifier.fit(input_fn=get_train_inputs, steps=2000)
    
            # Define the test inputs
                                              def get_test_inputs():
                    x = tf.constant(test_set.data)
                    y = tf.constant(test_set.target)
                    return x, y
    
            # Evaluate accuracy.
            accuracy_score = classifier.evaluate(input_fn=get_test_inputs, steps=1)["accuracy"]
            print("
    Test Accuracy: {0:f}
    ".format(accuracy_score))
    
            # Classify two new flower samples.
            def new_samples():
                    # 2 * 4
                    return np.array( [[6.4, 3.2, 4.5, 1.5], [5.8, 3.1, 5.0, 1.7]], dtype=np.float32)
    
            predictions = list(classifier.predict(input_fn=new_samples))
    
            print( "New Samples, Class Predictions:    {}
    " .format(predictions))
    
    if __name__ == "__main__":
            main()
    ~                                                                                                                      
    ~                       
    from __future__ import absolute_import
    from __future__ import division
    from __future__ import print_function
    
    import argparse
    import os
    import sys
    import tempfile
    
    import numpy as np
    from six.moves import urllib
    import tensorflow as tf
    
    from tensorflow.contrib.learn.python.learn import experiment
    from tensorflow.contrib.learn.python.learn.datasets import base
    from tensorflow.python import debug as tf_debug
    
    
    # URLs to download data sets from, if necessary.
    IRIS_TRAINING_DATA_URL = "https://raw.githubusercontent.com/tensorflow/tensorflow/master/tensorflow/examples/tutorials/monitors/iris_training.csv"
    IRIS_TEST_DATA_URL = "https://raw.githubusercontent.com/tensorflow/tensorflow/master/tensorflow/examples/tutorials/monitors/iris_test.csv"
    
    
    def maybe_download_data(data_dir):
      """Download data sets if necessary.
    
      Args:
        data_dir: Path to where data should be downloaded.
    
      Returns:
        Paths to the training and test data files.
      """
    
      if not os.path.isdir(data_dir):
        os.makedirs(data_dir)
    
      training_data_path = os.path.join(data_dir,
                                        os.path.basename(IRIS_TRAINING_DATA_URL))
      if not os.path.isfile(training_data_path):
        train_file = open(training_data_path, "wt")
        urllib.request.urlretrieve(IRIS_TRAINING_DATA_URL, train_file.name)
        train_file.close()
    
        print("Training data are downloaded to %s" % train_file.name)
    
      test_data_path = os.path.join(data_dir, os.path.basename(IRIS_TEST_DATA_URL))
      if not os.path.isfile(test_data_path):
        test_file = open(test_data_path, "wt")
        urllib.request.urlretrieve(IRIS_TEST_DATA_URL, test_file.name)
        test_file.close()
    
        print("Test data are downloaded to %s" % test_file.name)
                                                                         return training_data_path, test_data_path
    
    
    _IRIS_INPUT_DIM = 4
    
    
    def iris_input_fn():
      iris = base.load_iris()
            #nsamples*nfeats
      features = tf.reshape(tf.constant(iris.data), [-1, _IRIS_INPUT_DIM])
            #nsamples*
      labels = tf.reshape(tf.constant(iris.target), [-1])
      return features, labels
    
    
    def main(_):
      # Load datasets.
      if FLAGS.fake_data:
        training_set = tf.contrib.learn.datasets.base.Dataset(
            np.random.random([120, 4]),
            np.random.random_integers(3, size=[120]) - 1)
        test_set = tf.contrib.learn.datasets.base.Dataset(
            np.random.random([30, 4]),
            np.random.random_integers(3, size=[30]) - 1)
      else:
        training_data_path, test_data_path = maybe_download_data(FLAGS.data_dir)
        training_set = tf.contrib.learn.datasets.base.load_csv_with_header(
                                                                                        filename=training_data_path,
            target_dtype=np.int,
            features_dtype=np.float32)
        test_set = tf.contrib.learn.datasets.base.load_csv_with_header(
            filename=test_data_path, target_dtype=np.int, features_dtype=np.float32)
    
      # Specify that all features have real-value data
      feature_columns = [tf.contrib.layers.real_valued_column("", dimension=4)]
    
      # Build 3 layer DNN with 10, 20, 10 units respectively.
      model_dir = FLAGS.model_dir or tempfile.mkdtemp(prefix="debug_tflearn_iris_")
    
      classifier = tf.contrib.learn.DNNClassifier(
          feature_columns=feature_columns,
          hidden_units=[10, 20, 10],
          n_classes=3,
          model_dir=model_dir)
    
      hooks = None
      if FLAGS.debug:
        debug_hook = tf_debug.LocalCLIDebugHook(ui_type=FLAGS.ui_type,
                                                dump_root=FLAGS.dump_root)
        hooks = [debug_hook]
    
      if not FLAGS.use_experiment:
        # Fit model.
        classifier.fit(x=training_set.data,
                       y=training_set.target,
                                                                       steps=FLAGS.train_steps,
                       monitors=hooks)
    
        # Evaluate accuracy.
        accuracy_score = classifier.evaluate(x=test_set.data,
                                             y=test_set.target,
                                             hooks=hooks)["accuracy"]
      else:
        ex = experiment.Experiment(classifier,
                                   train_input_fn=iris_input_fn,
                                   eval_input_fn=iris_input_fn,
                                   train_steps=FLAGS.train_steps,
                                   eval_delay_secs=0,
                                   eval_steps=1,
                                   train_monitors=hooks,
                                   eval_hooks=hooks)
        ex.train()
        accuracy_score = ex.evaluate()["accuracy"]
    
      print("After training %d steps, Accuracy = %f" %
            (FLAGS.train_steps, accuracy_score))
    
    
    if __name__ == "__main__":
      parser = argparse.ArgumentParser()
      parser.register("type", "bool", lambda v: v.lower() == "true")
      parser.add_argument(
          "--data_dir",
                                          type=str,
          default="/tmp/iris_data",
          help="Directory to save the training and test data in.")
      parser.add_argument(
          "--model_dir",
          type=str,
          default="",
          help="Directory to save the trained model in.")
      parser.add_argument(
          "--train_steps",
          type=int,
          default=10,
          help="Number of steps to run trainer.")
      parser.add_argument(
          "--use_experiment",
          type="bool",
          nargs="?",
          const=True,
          default=False,
          help="Use tf.contrib.learn Experiment to run training and evaluation")
      parser.add_argument(
          "--ui_type",
          type=str,
          default="curses",
          help="Command-line user interface type (curses | readline)")
      parser.add_argument(
          "--fake_data",
          type="bool",      nargs="?",
          const=True,
          default=False,
          help="Use fake MNIST data for unit testing")
      parser.add_argument(
          "--debug",
          type="bool",
          nargs="?",
          const=True,
          default=False,
          help="Use debugger to track down bad values during training")
      parser.add_argument(
          "--dump_root",
          type=str,
          default="",
          help="Optional custom root directory for temporary debug dump data")
      FLAGS, unparsed = parser.parse_known_args()
      tf.app.run(main=main, argv=[sys.argv[0]] + unparsed)
    ~                                                         
  • 相关阅读:
    中英切换
    vue-cli3 关闭一直运行的 /sockjs-node/info?t= ...
    vue 深拷贝
    C++ 中 typename
    将博客搬至CSDN
    死锁及处理
    C 运算符优先级
    阻塞与非阻塞,同步与异步
    同步函数与异步函数
    C 结构体位域
  • 原文地址:https://www.cnblogs.com/energy1010/p/8615514.html
Copyright © 2011-2022 走看看