zoukankan      html  css  js  c++  java
  • 【基础知识八】集成学习

    难点:如何产生“好而不同”的个体学习器;“好而不同”:“准确性”和“多样性”

    一、个体与集成

    构建并结合多个学习器来完成学习任务

    集成:结果通过投票法voting产生,“少数服从多数”

    获得整体性能提升要求个体学习器:好而不同

    1)个体学习器有一定的“准确性”

    2)学习器间具有差异

    集成学习的错误率:

    假设基学习器的误差相互独立,随着集成中个体分类器数目T的增大,集成的错误率将指数级下降,最终趋向于零

     事实上,个体学习器是为了解决同一个问题训练出来的,它们不可能相互独立

    集成学习方法大致分两大类:

    个体学习器之间存在强依赖关系:代表是Boosting

    个体之间不存在强依赖关系:代表是Bagging和“随机森林”

    二、Boosting

    根据前一个基学习器的表现对训练样本分布进行调整,用调整后的样本分布来训练下一个基学习器;重复进行直至达到事先指定的值T

    最著名的算法是AdaBoost:推导基于“加性模型”,即基学习器的线性组合

    从偏差-方差分解的角度看,Boosting主要关注降低偏差,因此能基于泛化能力相当弱的学习器构建出很强的集成。

    三、Bagging

     bootstrap sampling产生T个训练样本的采样集,基于每个采样集训练出一个基学习器,集成采用平均/投票

    随机森林是Bagging的一个扩展变体

    在以决策树为基学习器构建Bagging集成的基础上,进一步在决策树的训练过程中引入随机属性选择

    三、结合策略

    数值型输出:

    1. 简单平均法

    2. 加权平均法

    标记分类:

    1.绝对多数投票法

    2.相对多数投票法

    3. 加权投票法

    学习法

    四、多样性

    1. 多样性度量

    通常,考虑个体分类器的两两相似/不相似性:

    不合度量

    相关系数

    Q-统计量

    K-统计量

    2. 多样性增强

    数据样本扰动

    输入属性扰动

    输出表示扰动

    算法参数扰动

  • 相关阅读:
    Linux下升级gcc版本(9.1.0版本)
    Linux/CentOS系统同步网络时间的2种方法详解
    为什么使用promise
    总结js深拷贝和浅拷贝
    js闭包理解
    select框实现多选的功能
    动态添加element-ui组件
    总结鼠标移入移出事件
    echarts提示框太长,导致显示不全 ,撑大div框的问题
    vue项目中管理定时器
  • 原文地址:https://www.cnblogs.com/eniac1946/p/7348284.html
Copyright © 2011-2022 走看看