zoukankan      html  css  js  c++  java
  • jvm 内存管理

    VM内存结构

    当代主流虚拟机(Hotspot VM)的垃圾回收都采用“分代回收”的算法。“分代回收”是基于这样一个事实:对象的生命周期不同,所以针对不同生命周期的对象可以采取不同的回收方式,以便提高回收效率。

    Hotspot VM将内存划分为不同的物理区,就是“分代”思想的体现。如图所示,JVM内存主要由新生代、老年代、永久代构成。

     

    1、新生代(Young Generation):大多数对象在新生代中被创建,其中很多对象的生命周期很短。每次新生代的垃圾回收(又称Minor GC)后只有少量对象存活,所以选用复制算法,只需要少量的复制成本就可以完成回收。

    新生代内又分三个区:一个Eden区,两个Survivor区(一般而言),大部分对象在Eden区中生成。当Eden区满时,还存活的对象将被复制到两个Survivor区(中的一个)。当这个Survivor区满时,此区的存活且不满足“晋升”条

    件的对象将被复制到另外一个Survivor区。对象每经历一次Minor GC,年龄加1,达到“晋升年龄阈值”后,被放到老年代,这个过程也称为“晋升”。显然,“晋升年龄阈值”的大小直接影响着对象在新生代中的停留时间,在Serial和

    ParNew GC两种回收器中,“晋升年龄阈值”通过参数MaxTenuringThreshold设定,默认值为15。

    2、老年代(Old Generation):在新生代中经历了N次垃圾回收后仍然存活的对象,就会被放到年老代,该区域中对象存活率高。老年代的垃圾回收(又称Major GC)通常使用“标记-清理”或“标记-整理”算法。整堆包括新生代和

    老年代的垃圾回收称为Full GC(HotSpot VM里,除了CMS之外,其它能收集老年代的GC都会同时收集整个GC堆,包括新生代)。

    3、永久代(Perm Generation):主要存放元数据,例如Class、Method的元信息,与垃圾回收要回收的Java对象关系不大。相对于新生代和年老代来说,该区域的划分对垃圾回收影响比较小。

     GC算法

           常见的GC算法:复制、标记-清除和标记-压缩

           复制:复制算法采用的方式为从根集合进行扫描,将存活的对象移动到一块空闲的区域,如图所示: 


    当存活的对象较少时,复制算法会比较高效(新生代的Eden区就是采用这种算法),其带来的成本是需要一块额外的空闲空间和对象的移动。

           标记-清除:该算法采用的方式是从跟集合开始扫描,对存活的对象进行标记,标记完毕后,再扫描整个空间中未被标记的对象,并进行清除。标记和清除的过程如下: 


    上图中蓝色部分是有被引用的对象,褐色部分是没有被引用的对象。在Marking阶段,需要进行全盘扫描,这个过程是比较耗时的。 


    清除阶段清理的是没有被引用的对象,存活的对象被保留。

    标记-清除动作不需要移动对象,且仅对不存活的对象进行清理,在空间中存活对象较多的时候,效率较高,但由于只是清除,没有重新整理,因此会造成内存碎片。

           标记-压缩:该算法与标记-清除算法类似,都是先对存活的对象进行标记,但是在清除后会把活的对象向左端空闲空间移动,然后再更新其引用对象的指针,如下图所示 


    由于进行了移动规整动作,该算法避免了标记-清除的碎片问题,但由于需要进行移动,因此成本也增加了。(该算法适用于旧生代)

    常见垃圾回收器

    不同的垃圾回收器,适用于不同的场景。:

    • 串行(Serial)回收器是单线程的一个回收器,简单、易实现、效率高。
    • 并行(ParNew)回收器是Serial的多线程版,可以充分的利用CPU资源,减少回收的时间。
    • 吞吐量优先(Parallel Scavenge)回收器,侧重于吞吐量的控制。
    • 并发标记清除(CMS,Concurrent Mark Sweep)回收器是一种以获取最短回收停顿时间为目标的回收器,该回收器是基于“标记-清除”算法实现的,。
    •  G1收集器  相比CMS收集器有不少改进,首先,基于标记-压缩算法,不会产生内存碎片,其次可以比较精确的控制停顿。Oracle JDK 7 Update 4及更高版本支持。
    • Serial Old收集器   Serial Old是Serial收集器的老年代版本,它同样使用一个单线程执行收集,使用“标记-整理”算法。主要使用在Client模式下的虚拟机。
    • Parallel Old收集器   Parallel Old是Parallel Scavenge收集器的老年代版本,使用多线程和“标记-整理”算法。
    • RTSJ垃圾收集器  RTSJ垃圾收集器,用于Java实时编程

    GC日志

    日志基本格式:名称  GC前内存占用->GC后内存占用(总内存大小)

    参数基本策略

    各分区的大小对GC的性能影响很大。如何将各分区调整到合适的大小,分析活跃数据的大小是很好的切入点。

    活跃数据的大小是指,应用程序稳定运行时长期存活对象在堆中占用的空间大小,也就是Full GC后堆中老年代占用空间的大小。可以通过GC日志中Full GC之后老年代数据大小得出,

    比较准确的方法是在程序稳定后,多次获取GC数据,通过取平均值的方式计算活跃数据的大小。活跃数据和各分区之间的比例关系如下:

    空间

    倍数

    总大小

    3-4 倍活跃数据的大小

    新生代

    1-1.5 活跃数据的大小

    老年代

    2-3 倍活跃数据的大小

    永久代

    1.2-1.5 倍Full GC后的永久代空间占用

    例如,根据GC日志获得老年代的活跃数据大小为300M,那么各分区大小可以设为:

    总堆:1200MB = 300MB × 4

    新生代:450MB = 300MB × 1.5

    老年代: 750MB = 1200MB - 450MB*

    这部分设置仅仅是堆大小的初始值,后面的优化中,可能会调整这些值,具体情况取决于应用程序的特性和需求。

  • 相关阅读:
    使用 ASP.NET Core MVC 创建 Web API(五)
    使用 ASP.NET Core MVC 创建 Web API(四)
    使用 ASP.NET Core MVC 创建 Web API(三)
    使用 ASP.NET Core MVC 创建 Web API(二)
    使用 ASP.NET Core MVC 创建 Web API(一)
    学习ASP.NET Core Razor 编程系列十九——分页
    学习ASP.NET Core Razor 编程系列十八——并发解决方案
    一个屌丝程序猿的人生(九十八)
    一个屌丝程序猿的人生(九十七)
    一个屌丝程序猿的人生(九十五)
  • 原文地址:https://www.cnblogs.com/erichi101/p/13500421.html
Copyright © 2011-2022 走看看