Find the contiguous subarray within an array (containing at least one number) which has the largest sum.
For example, given the array [−2,1,−3,4,−1,2,1,−5,4]
,
the contiguous subarray [4,−1,2,1]
has the largest sum = 6
.
More practice:
If you have figured out the O(n) solution, try coding another solution using the divide and conquer approach, which is more subtle.
class Solution {
public:
int maxSubArray(int A[], int n) {
int Sum[n];
if(n==0)
return 0;
Sum[0]=A[0];
int result=A[0];
for(int i=1;i<n;i++)
{
int tmp=Sum[i-1]+A[i];
Sum[i]=tmp>A[i]?tmp:A[i];
if(Sum[i]>result)
result=Sum[i];
}
return result;
}
};
public:
int maxSubArray(int A[], int n) {
int Sum[n];
if(n==0)
return 0;
Sum[0]=A[0];
int result=A[0];
for(int i=1;i<n;i++)
{
int tmp=Sum[i-1]+A[i];
Sum[i]=tmp>A[i]?tmp:A[i];
if(Sum[i]>result)
result=Sum[i];
}
return result;
}
};