zoukankan      html  css  js  c++  java
  • Unique Paths II

    Follow up for "Unique Paths":

    Now consider if some obstacles are added to the grids. How many unique paths would there be?

    An obstacle and empty space is marked as 1 and 0 respectively in the grid.

    For example,

    There is one obstacle in the middle of a 3x3 grid as illustrated below.

    [   [0,0,0],   [0,1,0],   [0,0,0] ] 

    The total number of unique paths is 2.

    Note: m and n will be at most 100.

    class Solution {
    public:
        int uniquePathsWithObstacles(vector<vector<int> > &obstacleGrid) 
        {
            int m=obstacleGrid.size();
            if(m==0return 0;
            
            int n=obstacleGrid[0].size();
            int path[n];
            path[0]=1-obstacleGrid[0][0];
            for(int i=1;i<n;i++) 
                if(obstacleGrid[0][i]==1) path[i]=0;
                else path[i]=path[i-1];
            
            for(int i=1;i<m;i++)
            {
                if(obstacleGrid[i][0]==1) path[0]=0;
                for(int j=1;j<n;j++)
                    if(obstacleGrid[i][j]==1) path[j]=0;
                    else path[j]=path[j-1]+path[j];
            }
            return path[n-1];
        }
    }; 
  • 相关阅读:
    Codeforces 376A. Night at the Museum
    Assigning Workstations
    树的直径证明
    Frogger
    Circle
    HDU 1022 Train Problem I
    Argus
    树状数组总结
    C++ 容器(一):顺序容器简介
    C++ 输出缓冲区的管理
  • 原文地址:https://www.cnblogs.com/erictanghu/p/3759458.html
Copyright © 2011-2022 走看看