Given two words (start and end), and a dictionary, find the length of shortest transformation sequence from start to end, such that:
- Only one letter can be changed at a time
- Each intermediate word must exist in the dictionary
For example,
Given:
start = "hit"
end = "cog"
dict = ["hot","dot","dog","lot","log"]
As one shortest transformation is "hit" -> "hot" -> "dot" -> "dog" -> "cog"
,
return its length 5
.
Note:
- Return 0 if there is no such transformation sequence.
- All words have the same length.
- All words contain only lowercase alphabetic characters.
struct Node { string word; int path; }; class Solution { public: int ladderLength(string start, string end, unordered_set<string> &dictout) { if(start==end) return 1; int len=start.length(); dictout.insert(start); dictout.insert(end); vector<Node*> path; Node* newnode=new Node(); newnode->word=start;newnode->path=1; path.push_back(newnode); unordered_set<string> dictin; dictin.insert(start); dictout.erase(dictout.find(start)); int index=0; while(index<path.size()) { if(path[index]->word==end) return path[index]->path; //generate next string news=path[index]->word; for(int i=0;i<len;i++) for(int k=0;k<26;k++) if(path[index]->word[i]!=k+'a') { news[i]=k+'a'; unordered_set<string>::const_iterator findout=dictout.find(news); if(findout!=dictout.end() && dictin.find(news)==dictin.end()) { newnode=new Node(); newnode->path=path[index]->path+1; newnode->word=news; path.push_back(newnode); dictin.insert(news); dictout.erase(findout); } news[i]=path[index]->word[i]; } delete path[index]; index++; } return 0; } };