zoukankan      html  css  js  c++  java
  • LC 431. Encode N-ary Tree to Binary Tree 【lock,hard】

    Design an algorithm to encode an N-ary tree into a binary tree and decode the binary tree to get the original N-ary tree. An N-ary tree is a rooted tree in which each node has no more than N children. Similarly, a binary tree is a rooted tree in which each node has no more than 2 children. There is no restriction on how your encode/decode algorithm should work. You just need to ensure that an N-ary tree can be encoded to a binary tree and this binary tree can be decoded to the original N-nary tree structure.

    For example, you may encode the following 3-ary tree to a binary tree in this way:

     

     

    Note that the above is just an example which might or might not work. You do not necessarily need to follow this format, so please be creative and come up with different approaches yourself.

     

    Note:

    1. N is in the range of [1, 1000]
    2. Do not use class member/global/static variables to store states. Your encode and decode algorithms should be stateless.
    class Codec {
    public:
    
        TreeNode * encode(Node* root) {
            if (!root) return nullptr;
            TreeNode* ret = new TreeNode(root->val);
            TreeNode* tmp = ret;
            if (root->children.size() != 0) {
                tmp->left = encode(root->children[0]);
            }
            tmp = tmp->left;
            for (int i = 1; i < root->children.size(); i++) {
                tmp->right = encode(root->children[i]);
                tmp = tmp->right;
            }
            return ret;
        }
        Node* decode(TreeNode* root) {
            if (!root) return nullptr;
            Node* ret = new Node(root->val, vector<Node*>());
            TreeNode*tmp = root->left;
            while (tmp) {
                ret->children.push_back(decode(tmp));
                tmp = tmp->right;
            }
            return ret;
        }
    };
  • 相关阅读:
    第二章、Java内存区域与内存溢出异常
    第二章、Java内存区域与内存溢出异常
    腾讯//格雷编码
    腾讯//格雷编码
    数据结构5.5_广义表的递归算法
    数据结构5.4_m元多项式的表示
    数据结构4.2_串操作应用举例_建立词索引表
    数据结构3_栈和队列
    数据结构2_线性表
    数据结构1_绪论
  • 原文地址:https://www.cnblogs.com/ethanhong/p/10158570.html
Copyright © 2011-2022 走看看