zoukankan      html  css  js  c++  java
  • LC 413. Arithmetic Slices

    A sequence of number is called arithmetic if it consists of at least three elements and if the difference between any two consecutive elements is the same.

    For example, these are arithmetic sequence:

    1, 3, 5, 7, 9
    7, 7, 7, 7
    3, -1, -5, -9

    The following sequence is not arithmetic.

    1, 1, 2, 5, 7

    A zero-indexed array A consisting of N numbers is given. A slice of that array is any pair of integers (P, Q) such that 0 <= P < Q < N.

    A slice (P, Q) of array A is called arithmetic if the sequence:
    A[P], A[p + 1], ..., A[Q - 1], A[Q] is arithmetic. In particular, this means that P + 1 < Q.

    The function should return the number of arithmetic slices in the array A.

    Example:

    A = [1, 2, 3, 4]
    
    return: 3, for 3 arithmetic slices in A: [1, 2, 3], [2, 3, 4] and [1, 2, 3, 4] itself.

    Runtime: 4 ms, faster than 35.11% of C++ online submissions for Arithmetic Slices.

    这一题的slice是连续的,所以只要判断i, i-1, i-2的关系然后递推就行了。

    dp[i] = dp[i-1] + 1, 这里的dp[i]是以index i结尾的等差数列。 意思是,如果当前的位置能和之前两个位置组成等差数列,那么该位置上之前的的等差数列就等于

    之前一个位置上结尾的(dp[i-1])数量(因为如果之前的位置上有相同差值的等差数列,再连接上以index i结尾的等差数列,还是可行的)然后再加上1,这个1

    是以当前位置作为结尾,用前面的两个数合并起来的一个新的三个数的等差数列,这在之前的情况中是没有出现的。

    class Solution {
    public:
        int numberOfArithmeticSlices(vector<int>& A) {
          int ret = 0, cur = 0, n = A.size();
          for(int i=2; i<n; i++){
            if(A[i] - A[i-1] == A[i-1] - A[i-2]){
              cur += 1;
              ret += cur;
            }else {
              cur = 0;
            }
          }
          return ret;
        }
    };
  • 相关阅读:
    [BZOJ 2457] 双端队列 (思维)
    字符串划分 [Bitset 字符串Dp]
    POJ2947 Widget Factory [高斯消元]
    数字串 [分治+哈希+扩展KMP]
    POJ3590 The shuffle Problem [置换+dp]
    P1970 花匠 [权值线段树优化dp, NOIp2003, Y]
    UVA306 Cipher[循环节]
    POJ3270 Cow Sorting [置换]
    POJ 3128 Leonardo's Notebook[置换群幂相关]
    VMware 11 设置U盘启动,总是找不到physicalDrive1
  • 原文地址:https://www.cnblogs.com/ethanhong/p/10195449.html
Copyright © 2011-2022 走看看